Module Objects

PyTypeObject PyModule_Type
Part of the Stable ABI.

This instance of PyTypeObject represents the Python module type. This is exposed to Python programs as types.ModuleType.

int PyModule_Check(PyObject *p)

Return true if p is a module object, or a subtype of a module object. This function always succeeds.

int PyModule_CheckExact(PyObject *p)

Return true if p is a module object, but not a subtype of PyModule_Type. This function always succeeds.

PyObject *PyModule_NewObject(PyObject *name)
Return value: New reference. Part of the Stable ABI since version 3.7.

Return a new module object with module.__name__ set to name. The module’s __name__, __doc__, __package__ and __loader__ attributes are filled in (all but __name__ are set to None). The caller is responsible for setting a __file__ attribute.

Return NULL with an exception set on error.

Added in version 3.3.

Changed in version 3.4: __package__ and __loader__ are now set to None.

PyObject *PyModule_New(const char *name)
Return value: New reference. Part of the Stable ABI.

Similar to PyModule_NewObject(), but the name is a UTF-8 encoded string instead of a Unicode object.

PyObject *PyModule_GetDict(PyObject *module)
Return value: Borrowed reference. Part of the Stable ABI.

Return the dictionary object that implements module’s namespace; this object is the same as the __dict__ attribute of the module object. If module is not a module object (or a subtype of a module object), SystemError is raised and NULL is returned.

It is recommended extensions use other PyModule_* and PyObject_* functions rather than directly manipulate a module’s __dict__.

PyObject *PyModule_GetNameObject(PyObject *module)
Return value: New reference. Part of the Stable ABI since version 3.7.

Return module’s __name__ value. If the module does not provide one, or if it is not a string, SystemError is raised and NULL is returned.

Added in version 3.3.

const char *PyModule_GetName(PyObject *module)
Part of the Stable ABI.

Similar to PyModule_GetNameObject() but return the name encoded to 'utf-8'.

void *PyModule_GetState(PyObject *module)
Part of the Stable ABI.

Return the “state” of the module, that is, a pointer to the block of memory allocated at module creation time, or NULL. See PyModuleDef.m_size.

PyModuleDef *PyModule_GetDef(PyObject *module)
Part of the Stable ABI.

Return a pointer to the PyModuleDef struct from which the module was created, or NULL if the module wasn’t created from a definition.

PyObject *PyModule_GetFilenameObject(PyObject *module)
Return value: New reference. Part of the Stable ABI.

Return the name of the file from which module was loaded using module’s __file__ attribute. If this is not defined, or if it is not a string, raise SystemError and return NULL; otherwise return a reference to a Unicode object.

Added in version 3.2.

const char *PyModule_GetFilename(PyObject *module)
Part of the Stable ABI.

Similar to PyModule_GetFilenameObject() but return the filename encoded to ‘utf-8’.

Deprecated since version 3.2: PyModule_GetFilename() raises UnicodeEncodeError on unencodable filenames, use PyModule_GetFilenameObject() instead.

Initializing C modules

Modules objects are usually created from extension modules (shared libraries which export an initialization function), or compiled-in modules (where the initialization function is added using PyImport_AppendInittab()). See Building C and C++ Extensions or Extending Embedded Python for details.

The initialization function can either pass a module definition instance to PyModule_Create(), and return the resulting module object, or request “multi-phase initialization” by returning the definition struct itself.

type PyModuleDef
Part of the Stable ABI (including all members).

The module definition struct, which holds all information needed to create a module object. There is usually only one statically initialized variable of this type for each module.

PyModuleDef_Base m_base

Always initialize this member to PyModuleDef_HEAD_INIT.

const char *m_name

Name for the new module.

const char *m_doc

Docstring for the module; usually a docstring variable created with PyDoc_STRVAR is used.

Py_ssize_t m_size

Module state may be kept in a per-module memory area that can be retrieved with PyModule_GetState(), rather than in static globals. This makes modules safe for use in multiple sub-interpreters.

This memory area is allocated based on m_size on module creation, and freed when the module object is deallocated, after the m_free function has been called, if present.

Setting m_size to -1 means that the module does not support sub-interpreters, because it has global state.

Setting it to a non-negative value means that the module can be re-initialized and specifies the additional amount of memory it requires for its state. Non-negative m_size is required for multi-phase initialization.

See PEP 3121 for more details.

PyMethodDef *m_methods

A pointer to a table of module-level functions, described by PyMethodDef values. Can be NULL if no functions are present.

PyModuleDef_Slot *m_slots

An array of slot definitions for multi-phase initialization, terminated by a {0, NULL} entry. When using single-phase initialization, m_slots must be NULL.

Changed in version 3.5: Prior to version 3.5, this member was always set to NULL, and was defined as:

inquiry m_reload
traverseproc m_traverse

A traversal function to call during GC traversal of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case immediately after the module is created and before the module is executed (Py_mod_exec function). More precisely, this function is not called if m_size is greater than 0 and the module state (as returned by PyModule_GetState()) is NULL.

Changed in version 3.9: No longer called before the module state is allocated.

inquiry m_clear

A clear function to call during GC clearing of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case immediately after the module is created and before the module is executed (Py_mod_exec function). More precisely, this function is not called if m_size is greater than 0 and the module state (as returned by PyModule_GetState()) is NULL.

Like PyTypeObject.tp_clear, this function is not always called before a module is deallocated. For example, when reference counting is enough to determine that an object is no longer used, the cyclic garbage collector is not involved and m_free is called directly.

Changed in version 3.9: No longer called before the module state is allocated.

freefunc m_free

A function to call during deallocation of the module object, or NULL if not needed.

This function is not called if the module state was requested but is not allocated yet. This is the case immediately after the module is created and before the module is executed (Py_mod_exec function). More precisely, this function is not called if m_size is greater than 0 and the module state (as returned by PyModule_GetState()) is NULL.

Changed in version 3.9: No longer called before the module state is allocated.

Single-phase initialization

The module initialization function may create and return the module object directly. This is referred to as “single-phase initialization”, and uses one of the following two module creation functions:

PyObject *PyModule_Create(PyModuleDef *def)
Return value: New reference.

Create a new module object, given the definition in def. This behaves like PyModule_Create2() with module_api_version set to PYTHON_API_VERSION.

PyObject *PyModule_Create2(PyModuleDef *def, int module_api_version)
Return value: New reference. Part of the Stable ABI.

Create a new module object, given the definition in def, assuming the API version module_api_version. If that version does not match the version of the running interpreter, a RuntimeWarning is emitted.

Return NULL with an exception set on error.

Note

Most uses of this function should be using PyModule_Create() instead; only use this if you are sure you need it.

Before it is returned from in the initialization function, the resulting module object is typically populated using functions like PyModule_AddObjectRef().

Multi-phase initialization

An alternate way to specify extensions is to request “multi-phase initialization”. Extension modules created this way behave more like Python modules: the initialization is split between the creation phase, when the module object is created, and the execution phase, when it is populated. The distinction is similar to the __new__() and __init__() methods of classes.

Unlike modules created using single-phase initialization, these modules are not singletons: if the sys.modules entry is removed and the module is re-imported, a new module object is created, and the old module is subject to normal garbage collection – as with Python modules. By default, multiple modules created from the same definition should be independent: changes to one should not affect the others. This means that all state should be specific to the module object (using e.g. using PyModule_GetState()), or its contents (such as the module’s __dict__ or individual classes created with PyType_FromSpec()).

All modules created using multi-phase initialization are expected to support sub-interpreters. Making sure multiple modules are independent is typically enough to achieve this.

To request multi-phase initialization, the initialization function (PyInit_modulename) returns a PyModuleDef instance with non-empty m_slots. Before it is returned, the PyModuleDef instance must be initialized with the following function:

PyObject *PyModuleDef_Init(PyModuleDef *def)
Return value: Borrowed reference. Part of the Stable ABI since version 3.5.

Ensures a module definition is a properly initialized Python object that correctly reports its type and reference count.

Returns def cast to PyObject*, or NULL if an error occurred.

Added in version 3.5.

The m_slots member of the module definition must point to an array of PyModuleDef_Slot structures:

type PyModuleDef_Slot
int slot

A slot ID, chosen from the available values explained below.

void *value

Value of the slot, whose meaning depends on the slot ID.

Added in version 3.5.

The m_slots array must be terminated by a slot with id 0.

The available slot types are:

Py_mod_create

Specifies a function that is called to create the module object itself. The value pointer of this slot must point to a function of the signature:

PyObject *create_module(PyObject *spec, PyModuleDef *def)

The function receives a ModuleSpec instance, as defined in PEP 451, and the module definition. It should return a new module object, or set an error and return NULL.

This function should be kept minimal. In particular, it should not call arbitrary Python code, as trying to import the same module again may result in an infinite loop.

Multiple Py_mod_create slots may not be specified in one module definition.

If Py_mod_create is not specified, the import machinery will create a normal module object using PyModule_New(). The name is taken from spec, not the definition, to allow extension modules to dynamically adjust to their place in the module hierarchy and be imported under different names through symlinks, all while sharing a single module definition.

There is no requirement for the returned object to be an instance of PyModule_Type. Any type can be used, as long as it supports setting and getting import-related attributes. However, only PyModule_Type instances may be returned if the PyModuleDef has non-NULL m_traverse, m_clear, m_free; non-zero m_size; or slots other than Py_mod_create.

Py_mod_exec

Specifies a function that is called to execute the module. This is equivalent to executing the code of a Python module: typically, this function adds classes and constants to the module. The signature of the function is:

int exec_module(PyObject *module)

If multiple Py_mod_exec slots are specified, they are processed in the order they appear in the m_slots array.

Py_mod_multiple_interpreters

Specifies one of the following values:

Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED

The module does not support being imported in subinterpreters.

Py_MOD_MULTIPLE_INTERPRETERS_SUPPORTED

The module supports being imported in subinterpreters, but only when they share the main interpreter’s GIL. (See Isolating Extension Modules.)

Py_MOD_PER_INTERPRETER_GIL_SUPPORTED

The module supports being imported in subinterpreters, even when they have their own GIL. (See Isolating Extension Modules.)

This slot determines whether or not importing this module in a subinterpreter will fail.

Multiple Py_mod_multiple_interpreters slots may not be specified in one module definition.

If Py_mod_multiple_interpreters is not specified, the import machinery defaults to Py_MOD_MULTIPLE_INTERPRETERS_NOT_SUPPORTED.

Added in version 3.12.

See PEP 489 for more details on multi-phase initialization.

Low-level module creation functions

The following functions are called under the hood when using multi-phase initialization. They can be used directly, for example when creating module objects dynamically. Note that both PyModule_FromDefAndSpec and PyModule_ExecDef must be called to fully initialize a module.

PyObject *PyModule_FromDefAndSpec(PyModuleDef *def, PyObject *spec)
Return value: New reference.

Create a new module object, given the definition in def and the ModuleSpec spec. This behaves like PyModule_FromDefAndSpec2() with module_api_version set to PYTHON_API_VERSION.

Added in version 3.5.

PyObject *PyModule_FromDefAndSpec2(PyModuleDef *def, PyObject *spec, int module_api_version)
Return value: New reference. Part of the Stable ABI since version 3.7.

Create a new module object, given the definition in def and the ModuleSpec spec, assuming the API version module_api_version. If that version does not match the version of the running interpreter, a RuntimeWarning is emitted.

Return NULL with an exception set on error.

Note

Most uses of this function should be using PyModule_FromDefAndSpec() instead; only use this if you are sure you need it.

Added in version 3.5.

int PyModule_ExecDef(PyObject *module, PyModuleDef *def)
Part of the Stable ABI since version 3.7.

Process any execution slots (Py_mod_exec) given in def.

Added in version 3.5.

int PyModule_SetDocString(PyObject *module, const char *docstring)
Part of the Stable ABI since version 3.7.

Set the docstring for module to docstring. This function is called automatically when creating a module from PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

Added in version 3.5.

int PyModule_AddFunctions(PyObject *module, PyMethodDef *functions)
Part of the Stable ABI since version 3.7.

Add the functions from the NULL terminated functions array to module. Refer to the PyMethodDef documentation for details on individual entries (due to the lack of a shared module namespace, module level “functions” implemented in C typically receive the module as their first parameter, making them similar to instance methods on Python classes). This function is called automatically when creating a module from PyModuleDef, using either PyModule_Create or PyModule_FromDefAndSpec.

Added in version 3.5.

Support functions

The module initialization function (if using single phase initialization) or a function called from a module execution slot (if using multi-phase initialization), can use the following functions to help initialize the module state:

int PyModule_AddObjectRef(PyObject *module, const char *name, PyObject *value)
Part of the Stable ABI since version 3.10.

Add an object to module as name. This is a convenience function which can be used from the module’s initialization function.

On success, return 0. On error, raise an exception and return -1.

Return -1 if value is NULL. It must be called with an exception raised in this case.

Example usage:

static int
add_spam(PyObject *module, int value)
{
    PyObject *obj = PyLong_FromLong(value);
    if (obj == NULL) {
        return -1;
    }
    int res = PyModule_AddObjectRef(module, "spam", obj);
    Py_DECREF(obj);
    return res;
 }

The example can also be written without checking explicitly if obj is NULL:

static int
add_spam(PyObject *module, int value)
{
    PyObject *obj = PyLong_FromLong(value);
    int res = PyModule_AddObjectRef(module, "spam", obj);
    Py_XDECREF(obj);
    return res;
 }

Note that Py_XDECREF() should be used instead of Py_DECREF() in this case, since obj can be NULL.

The number of different name strings passed to this function should be kept small, usually by only using statically allocated strings as name. For names that aren’t known at compile time, prefer calling PyUnicode_FromString() and PyObject_SetAttr() directly. For more details, see PyUnicode_InternFromString(), which may be used internally to create a key object.

Added in version 3.10.

int PyModule_AddObject(PyObject *module, const char *name, PyObject *value)
Part of the Stable ABI.

Similar to PyModule_AddObjectRef(), but steals a reference to value on success (if it returns 0).

The new PyModule_AddObjectRef() function is recommended, since it is easy to introduce reference leaks by misusing the PyModule_AddObject() function.

Note

Unlike other functions that steal references, PyModule_AddObject() only releases the reference to value on success.

This means that its return value must be checked, and calling code must Py_DECREF() value manually on error.

Example usage:

static int
add_spam(PyObject *module, int value)
{
    PyObject *obj = PyLong_FromLong(value);
    if (obj == NULL) {
        return -1;
    }
    if (PyModule_AddObject(module, "spam", obj) < 0) {
        Py_DECREF(obj);
        return -1;
    }
    // PyModule_AddObject() stole a reference to obj:
    // Py_DECREF(obj) is not needed here
    return 0;
}

The example can also be written without checking explicitly if obj is NULL:

static int
add_spam(PyObject *module, int value)
{
    PyObject *obj = PyLong_FromLong(value);
    if (PyModule_AddObject(module, "spam", obj) < 0) {
        Py_XDECREF(obj);
        return -1;
    }
    // PyModule_AddObject() stole a reference to obj:
    // Py_DECREF(obj) is not needed here
    return 0;
}

Note that Py_XDECREF() should be used instead of Py_DECREF() in this case, since obj can be NULL.

int PyModule_AddIntConstant(PyObject *module, const char *name, long value)
Part of the Stable ABI.

Add an integer constant to module as name. This convenience function can be used from the module’s initialization function. Return -1 with an exception set on error, 0 on success.

This is a convenience function that calls PyLong_FromLong() and PyModule_AddObjectRef(); see their documentation for details.

int PyModule_AddStringConstant(PyObject *module, const char *name, const char *value)
Part of the Stable ABI.

Add a string constant to module as name. This convenience function can be used from the module’s initialization function. The string value must be NULL-terminated. Return -1 with an exception set on error, 0 on success.

This is a convenience function that calls PyUnicode_InternFromString() and PyModule_AddObjectRef(); see their documentation for details.

PyModule_AddIntMacro(module, macro)

Add an int constant to module. The name and the value are taken from macro. For example PyModule_AddIntMacro(module, AF_INET) adds the int constant AF_INET with the value of AF_INET to module. Return -1 with an exception set on error, 0 on success.

PyModule_AddStringMacro(module, macro)

Add a string constant to module.

int PyModule_AddType(PyObject *module, PyTypeObject *type)
Part of the Stable ABI since version 3.10.

Add a type object to module. The type object is finalized by calling internally PyType_Ready(). The name of the type object is taken from the last component of tp_name after dot. Return -1 with an exception set on error, 0 on success.

Added in version 3.9.

Module lookup

Single-phase initialization creates singleton modules that can be looked up in the context of the current interpreter. This allows the module object to be retrieved later with only a reference to the module definition.

These functions will not work on modules created using multi-phase initialization, since multiple such modules can be created from a single definition.

PyObject *PyState_FindModule(PyModuleDef *def)
Return value: Borrowed reference. Part of the Stable ABI.

Returns the module object that was created from def for the current interpreter. This method requires that the module object has been attached to the interpreter state with PyState_AddModule() beforehand. In case the corresponding module object is not found or has not been attached to the interpreter state yet, it returns NULL.

int PyState_AddModule(PyObject *module, PyModuleDef *def)
Part of the Stable ABI since version 3.3.

Attaches the module object passed to the function to the interpreter state. This allows the module object to be accessible via PyState_FindModule().

Only effective on modules created using single-phase initialization.

Python calls PyState_AddModule automatically after importing a module, so it is unnecessary (but harmless) to call it from module initialization code. An explicit call is needed only if the module’s own init code subsequently calls PyState_FindModule. The function is mainly intended for implementing alternative import mechanisms (either by calling it directly, or by referring to its implementation for details of the required state updates).

The caller must hold the GIL.

Return -1 with an exception set on error, 0 on success.

Added in version 3.3.

int PyState_RemoveModule(PyModuleDef *def)
Part of the Stable ABI since version 3.3.

Removes the module object created from def from the interpreter state. Return -1 with an exception set on error, 0 on success.

The caller must hold the GIL.

Added in version 3.3.