Python Setup and Usage
Release 3.9.20

Guido van Rossum
and the Python development team

September 09, 2024

Python Software Foundation
Email: docs@python.org

1 Command line and environment
Commandline
1.1.1 Interface options
1.1.2 Generic options

1.1.3 Miscellaneous options
1.1.4 Options you shouldn’t use
Environment variables
1.2.1 Debug-mode variables

2

3

1.1

1.2

Using Python on Unix platforms
Getting and installing the latest version of Python

2.1

2.2
23
24

Using Python on Windows
The full installer
3.1.1 Installation steps
3.1.2 Removing the MAX_PATH Limitation
3.1.3 Installing Without Ul
3.1.4 Installing Without Downloading
3.1.5 Modifying an install
The Microsoft Store package
3.2.1 Known Issues

The nuget.org packages
The embeddable package
3.4.1 Python Application
3.4.2 Embedding Python

3.1

32

33
34

35
3.6

3.7
3.8

39

2.1.1 On Linux

2.1.2 On FreeBSD and OpenBSD
2.1.3 On OpenSolaris
Building Python

Alternative bundles
Configuring Python

3.6.1 Excursus: Setting environment variables
3.6.2 Finding the Python executable
UTF-8mode
Python Launcher for Windows
3.8.1 Getting started
3.8.2 Shebang Lines
3.8.3 Arguments in shebang lines
3.8.4 Customization

3.8.5 Diagnostics

Findingmodules

3.10 Additional modules

CONTENTS

3.10.1 PyWiIn32 . . e e e
3102 cx_Freeze e e
3.11 Compiling Pythonon Windows o 0 . o e e
3.12 OtherPlatforms e
Using Python on a Mac
4.1 Getting and Installing MacPython o
4.1.1 HowtorunaPythonscript
4.1.2 Runningscripts witha GUI L
4.1.3 Configuration e e e e e
42 ThelDE e e e
4.3 Installing Additional Python Packages
44 GUI Programmingonthe Mac
4.5 Distributing Python Applicationsonthe Mac
4.6 Other Resources o i i i i i e e e
Editors and IDEs
Glossary

About these documents
Contributors to the Python Documentation

B.1

History and License

C.1 Historyof thesoftware e
C.2 Terms and conditions for accessing or otherwise using Python
C.2.1 PSF LICENSE AGREEMENT FOR PYTHON 39.20.
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0
C.2.3 CNRILICENSE AGREEMENT FORPYTHON 1.6.1
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.20 DOCUMEN-
TATION e
C.3 Licenses and Acknowledgements for Incorporated Software
C.3.1 Mersenne TWISIET o o o v v it i e e e e e e e e e
C3.2 Sockets e e e e
C.3.3 Asynchronous SoCKet Services v v v v v v i e e e e e e e e e
C.3.4 Cookie management v v v v v v e e e e e e e e e e e e e e e e e
C3.5 Executiontracing e e e e e
C.3.6 UUencode and UUdecode functions
C3.7 XML Remote Procedure Calls
C3.8 test_epoll e e e
C.3.9 Selectkqueue e e e e e e
C3.10 SipHash24 o e e
C3.01 strtodand dtoa. oo L e e e e e e e e
C3.12 OpenSSL L e
C3U03 expat. . . . o v o o e e e e e e e
C3.04 Hbfli e e e
C3.05 zlib . . o e e e
C3.16 cfuhash e
C3.17 Hbmpdec o e e e e
C3.18 WI3CCIANTeStSUITe . . . o v v v v e e e e e e e e e e e e e e e e e e

D Copyright

Index

33
33
33
34
34
34
34
34
35
35

37

39

51
51

53
53
54
54
55
56
57

57
57
57
58
59
59
60
60
61
61
62
62
63
63
65
66
66
67
67
68

69

71

Python Setup and Usage, Release 3.9.20

This part of the documentation is devoted to general information on the setup of the Python environment on different
platforms, the invocation of the interpreter and things that make working with Python easier.

CONTENTS 1

Python Setup and Usage, Release 3.9.20

2 CONTENTS

CHAPTER
ONE

COMMAND LINE AND ENVIRONMENT

The CPython interpreter scans the command line and the environment for various settings.

CPython implementation detail: Other implementations’ command line schemes may differ. See implementations
for further resources.

1.1

Command line

When invoking Python, you may specify any of these options:

’python [-bBdEhiIOgsSuvVWx?] [-c command | -m module-name | script | -] [args]

The most common use case is, of course, a simple invocation of a script:

’python myscript.py

1.1.1 Interface options

The interpreter interface resembles that of the UNIX shell, but provides some additional methods of invocation:

When called with standard input connected to a tty device, it prompts for commands and executes them until
an EOF (an end-of-file character, you can produce that with Ctr1-D on UNIX or Ctrl-Z, Enter on
Windows) is read.

When called with a file name argument or with a file as standard input, it reads and executes a script from that
file.

When called with a directory name argument, it reads and executes an appropriately named script from that
directory.

When called with —c command, it executes the Python statement(s) given as command. Here command may
contain multiple statements separated by newlines. Leading whitespace is significant in Python statements!

When called with -m module-name, the given module is located on the Python module path and executed
as a script.

In non-interactive mode, the entire input is parsed before it is executed.

An interface option terminates the list of options consumed by the interpreter, all consecutive arguments will end
up in sys.argv - note that the first element, subscript zero (sys.argv [0]), is a string reflecting the program’s
source.

-c <command>

Execute the Python code in command. command can be one or more statements separated by newlines, with
significant leading whitespace as in normal module code.

If this option is given, the first element of sys.argv will be "—-c" and the current directory will be added
to the start of sys.path (allowing modules in that directory to be imported as top level modules).

Python Setup and Usage, Release 3.9.20

Raises an auditing event cpython. run_command with argument command.

-m <module-name>
Search sys.path for the named module and execute its contents as the __main___ module.

Since the argument is a module name, you must not give a file extension (. py). The module name should be
a valid absolute Python module name, but the implementation may not always enforce this (e.g. it may allow
you to use a name that includes a hyphen).

Package names (including namespace packages) are also permitted. When a package name is supplied instead
of a normal module, the interpreter will execute <pkg>.__main___ as the main module. This behaviour is
deliberately similar to the handling of directories and zipfiles that are passed to the interpreter as the script
argument.

Note: This option cannot be used with built-in modules and extension modules written in C, since they do not
have Python module files. However, it can still be used for precompiled modules, even if the original source
file is not available.

If this option is given, the first element of sy s . argv will be the full path to the module file (while the module
file is being located, the first element will be set to "-m"). As with the —c option, the current directory will
be added to the start of sys.path.

—I option can be used to run the script in isolated mode where sys.path contains neither the current
directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Many standard library modules contain code that is invoked on their execution as a script. An example is the
timeit module:

python -m timeit -s 'setup here' 'benchmarked code here'
python -m timeit -h # for details

Raises an auditing event cpython. run_module with argument module-name.

See also:
runpy . run_module () Equivalent functionality directly available to Python code

PEP 338 - Executing modules as scripts
Changed in version 3.1: Supply the package name toruna ___main__ submodule.

Changed in version 3.4: namespace packages are also supported

Read commands from standard input (sys . stdin). If standard input is a terminal, -1 is implied.

If this option is given, the first element of sys.argv will be "~" and the current directory will be added to
the start of sys.path.

Raises an auditing event cpython . run_stdin with no arguments.

<script>
Execute the Python code contained in script, which must be a filesystem path (absolute or relative) referring
to either a Python file, a directory containinga __main__ .py file, or a zipfile containinga __main__ .py
file.

If this option is given, the first element of sy s .argv will be the script name as given on the command line.

If the script name refers directly to a Python file, the directory containing that file is added to the start of
sys.path, and the file is executed as the __main___ module.

If the script name refers to a directory or zipfile, the script name is added to the start of sys.path and the
_ _main__ .py file in that location is executed as the __main__ module.

4 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0338

Python Setup and Usage, Release 3.9.20

—TI option can be used to run the script in isolated mode where sys.path contains neither the script’s
directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.

Raises an auditing event cpython.run_file with argument filename.

See also:

runpy.run_path () Equivalent functionality directly available to Python code

If no interface option is given, -1 is implied, sys.argv [0] is an empty string (" ") and the current directory will
be added to the start of sys.path. Also, tab-completion and history editing is automatically enabled, if available
on your platform (see rlcompleter-config).

See also:

tut-invoking

Changed in version 3.4: Automatic enabling of tab-completion and history editing.

1.1.2 Generic options

-?
-h

--help

-V

Print a short description of all command line options.

——version

Print the Python version number and exit. Example output could be:

Python 3.8.0b2+

When given twice, print more information about the build, like:

Python 3.8.0b2+ (3.8:0c076caaa8, Apr 20 2019, 21:55:00)
[GCC 6.2.0 20161005]

New in version 3.6: The —VV option.

1.1.3 Miscellaneous options

-b

Issue a warning when comparing bytes or bytearray with st r or bytes with int. Issue an error when
the option is given twice (-bb).

Changed in version 3.5: Affects comparisons of bytes with int.

If given, Python won’t try to write .pyc files on the import of source modules. See also
PYTHONDONTWRITEBYTECODE.

——check-hash-based-pycs default|always|never

Control the validation behavior of hash-based .pyc files. See pyc-invalidation. When set to default,
checked and unchecked hash-based bytecode cache files are validated according to their default semantics.
When set to always, all hash-based . pyc files, whether checked or unchecked, are validated against their
corresponding source file. When set to never, hash-based . pyc files are not validated against their corre-
sponding source files.

The semantics of timestamp-based . pyc files are unaffected by this option.

1.1.

Command line 5

Python Setup and Usage, Release 3.9.20

-d
Turn on parser debugging output (for expert only, depending on compilation options). See also
PYTHONDEBUG.

-E
Ignore all PYTHON* environment variables, e.g. PYTHONPATH and PYTHONHOME, that might be set.

-i
When a script is passed as first argument or the —c option is used, enter interactive mode after executing the
script or the command, even when sys . stdin does not appear to be a terminal. The PYTHONS TARTUP
file is not read.
This can be useful to inspect global variables or a stack trace when a script raises an exception. See also
PYTHONINSPECT.

-I
Run Python in isolated mode. This also implies -E and -s. In isolated mode sys . path contains neither the
script’s directory nor the user’s site-packages directory. All PYTHON* environment variables are ignored, too.
Further restrictions may be imposed to prevent the user from injecting malicious code.
New in version 3.4.

-0
Remove assert statements and any code conditional on the value of __debug__. Augment the filename
for compiled (bytecode) files by adding .opt—1 before the .pyc extension (see PEP 488). See also
PYTHONOPTIMIZE.
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

-00
Do -0 and also discard docstrings. Augment the filename for compiled (byrecode) files by adding . opt -2
before the . pyc extension (see PEP 488).
Changed in version 3.5: Modify . pyc filenames according to PEP 488.

-q
Don’t display the copyright and version messages even in interactive mode.
New in version 3.2.

-R
Turn on hash randomization. This option only has an effect if the PYTHONHASHSEED environment variable
is set to 0, since hash randomization is enabled by default.
On previous versions of Python, this option turns on hash randomization, so that the __hash__ () values of
str and bytes objects are “salted” with an unpredictable random value. Although they remain constant within
an individual Python process, they are not predictable between repeated invocations of Python.
Hash randomization is intended to provide protection against a denial-of-service caused by carefully-chosen
inputs that exploit the worst case performance of a dict construction, O(n?) complexity. See http://www.ocert.
org/advisories/ocert-2011-003.html for details.
PYTHONHASHSEED allows you to set a fixed value for the hash seed secret.
Changed in version 3.7: The option is no longer ignored.
New in version 3.2.3.

-s
Don’t add the user site-packages directorytosys.path.
See also:
PEP 370 - Per user site-packages directory

-S
Disable the import of the module site and the site-dependent manipulations of sys.path that it entails.
Also disable these manipulations if site is explicitly imported later (call site.main () if you want them
to be triggered).

6 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
https://www.python.org/dev/peps/pep-0488
http://www.ocert.org/advisories/ocert-2011-003.html
http://www.ocert.org/advisories/ocert-2011-003.html
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.9.20

-u

-V

Force the stdout and stderr streams to be unbuffered. This option has no effect on the stdin stream.
See also PYTHONUNBUEFFERED.

Changed in version 3.7: The text layer of the stdout and stderr streams now is unbuffered.

Print a message each time a module is initialized, showing the place (filename or built-in module) from which
it is loaded. When given twice (—vv), print a message for each file that is checked for when searching for a
module. Also provides information on module cleanup at exit. See also PYTHONVERBOSE.

-W arg

-X

Warning control. Python’s warning machinery by default prints warning messages to sys . stderr. A typical
warning message has the following form:

file:line: category: message

By default, each warning is printed once for each source line where it occurs. This option controls how often
warnings are printed.

Multiple —I7 options may be given; when a warning matches more than one option, the action for the last
matching option is performed. Invalid - options are ignored (though, a warning message is printed about
invalid options when the first warning is issued).

Warnings can also be controlled using the P Y THONWARNINGS environment variable and from within a Python
program using the warnings module.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

-Wdefault Warn once per call location
-Werror
-Walways

#

Convert to exceptions

#
—Wmodule # Warn once per calling module

#

#

Warn every time

—-Wonce
-Wignore

Warn once per Python process
Never warn

The action names can be abbreviated as desired (e.g. -Wi, -Wd, —Wa, —We) and the interpreter will resolve
them to the appropriate action name.

See warning-filter and describing-warning-filters for more details.

Skip the first line of the source, allowing use of non-Unix forms of # ! cmd. This is intended for a DOS specific
hack only.

Reserved for various implementation-specific options. CPython currently defines the following possible values:
¢ —X faulthandler toenable faulthandler;
e —X oldparser: enable the traditional LL(1) parser. See also PYTHONOLDPARSER and PEP 617.

e —X showrefcount to output the total reference count and number of used memory blocks when the
program finishes or after each statement in the interactive interpreter. This only works on debug builds.

e —X tracemalloc to start tracing Python memory allocations using the tracemalloc mod-
ule. By default, only the most recent frame is stored in a traceback of a trace. Use -X
tracemalloc=NFRAME to start tracing with a traceback limit of NFRAME frames. See the
tracemalloc.start () for more information.

e —X int_max_str_digits configures the integer string conversion length limitation. See also
PYTHONINTMAXSTRDIGITS.

1.1. Command line 7

https://www.python.org/dev/peps/pep-0617

Python Setup and Usage, Release 3.9.20

e —X importtime toshow how longeach import takes. It shows module name, cumulative time (includ-
ing nested imports) and self time (excluding nested imports). Note that its output may be broken in multi-
threaded application. Typical usage is python3 -X importtime -c 'import asyncio'.
See also PYTHONPROFILETIMPORTTIME.

e —X dev: enable Python Development Mode, introducing additional runtime checks that are too expen-
sive to be enabled by default.

e —X utf8 enables UTF-8 mode for operating system interfaces, overriding the default locale-aware
mode. -X ut £8=0 explicitly disables UTF-8 mode (even when it would otherwise activate automati-
cally). See PYTHONUTE 8 for more details.

e —X pycache_prefix=PATH enables writing . pyc files to a parallel tree rooted at the given direc-
tory instead of to the code tree. See also PYTHONPYCACHEPREF IX.

It also allows passing arbitrary values and retrieving them through the sys._xoptions dictionary.
Changed in version 3.2: The —X option was added.

New in version 3.3: The -X faulthandler option.

New in version 3.4: The -X showrefcount and -X tracemalloc options.

New in version 3.6: The -X showalloccount option.

New in version 3.7: The -X importtime, -X devand -X ut £8 options.

New in version 3.8: The -X pycache_prefix option. The -X dev option now logs close () excep-
tions in 10 . IOBase destructor.

Changed in version 3.9: Using -X dev option, check encoding and errors arguments on string encoding and
decoding operations.

The -X showalloccount option has been removed.
New in version 3.9.14: The -X int_max_str_digits option.

Deprecated since version 3.9, will be removed in version 3.10: The -X oldparser option.

1.1.4 Options you shouldn’t use

-J
Reserved for use by Jython.

1.2 Environment variables

These environment variables influence Python’s behavior, they are processed before the command-line switches other
than -E or -I. It is customary that command-line switches override environmental variables where there is a conflict.

PYTHONHOME
Change the location of the standard Python libraries. By default, the libraries are searched in prefix/1ib/
pythonversion and exec_prefix/lib/pythonversion, where prefix and exec_prefix
are installation-dependent directories, both defaulting to /usr/local.

When PYTHONHOME is set to a single directory, its value replaces both prefix and exec_prefix. To
specify different values for these, set PYTHONHOME to prefix:exec_prefix.

PYTHONPATH
Augment the default search path for module files. The format is the same as the shell’s PATH: one or more
directory pathnames separated by os.pathsep (e.g. colons on Unix or semicolons on Windows). Non-
existent directories are silently ignored.

In addition to normal directories, individual PYTHONPA TH entries may refer to zipfiles containing pure Python
modules (in either source or compiled form). Extension modules cannot be imported from zipfiles.

8 Chapter 1. Command line and environment

http://www.jython.org/

Python Setup and Usage, Release 3.9.20

The default search path is installation dependent, but generally begins with prefix/lib/
pythonversion (see PYTHONHOME above). It is always appended to PYTHONPATH.

An additional directory will be inserted in the search path in front of PYTHONPATH as described above under
Interface options. The search path can be manipulated from within a Python program as the variable sys .
path.

PYTHONPLATLIBDIR
If this is set to a non-empty string, it overrides the sys.platlibdir value.

New in version 3.9.

PYTHONSTARTUP
If this is the name of a readable file, the Python commands in that file are executed before the first prompt is
displayed in interactive mode. The file is executed in the same namespace where interactive commands are
executed so that objects defined or imported in it can be used without qualification in the interactive session.

You can also change the prompts sys.psl and sys.ps2 and the hook sys.___interactivehook_
in this file.

Raises an auditingevent cpython . run_startup with the filename as the argument when called on startup.

PYTHONOPTIMIZE
If this is set to a non-empty string it is equivalent to specifying the —O option. If set to an integer, it is equivalent
to specifying —O multiple times.

PYTHONBREAKPOINT
If this is set, it names a callable using dotted-path notation. The module containing the callable will be
imported and then the callable will be run by the default implementation of sys.breakpointhook ()
which itself is called by built-in breakpoint (). If not set, or set to the empty string, it is equiva-
lent to the value “pdb.set_trace”. Setting this to the string “0” causes the default implementation of sys.
breakpointhook () to do nothing but return immediately.

New in version 3.7.

PYTHONDEBUG
If this is set to a non-empty string it is equivalent to specifying the —d option. If set to an integer, it is equivalent
to specifying —d multiple times.

PYTHONOLDPARSER
If this is set to a non-empty string, enable the traditional LL(1) parser.
See also the —~X oldparser option and PEP 617.

Deprecated since version 3.9, will be removed in version 3.10.

PYTHONINSPECT
If this is set to a non-empty string it is equivalent to specifying the —i option.
This variable can also be modified by Python code using os.environ to force inspect mode on program
termination.
Raises an auditing event cpython . run_stdin with no arguments.
Changed in version 3.9.20: (also 3.8.20) Emits audit events.
PYTHONUNBUFFERED
If this is set to a non-empty string it is equivalent to specifying the —u option.

PYTHONVERBOSE
If this is set to a non-empty string it is equivalent to specifying the —v option. If set to an integer, it is equivalent
to specifying —v multiple times.

PYTHONCASEOK
If this is set, Python ignores case in import statements. This only works on Windows and macOS.

PYTHONDONTWRITEBYTECODE
If this is set to a non-empty string, Python won'’t try to write . pyc files on the import of source modules. This
is equivalent to specifying the —B option.

1.2. Environment variables 9

https://www.python.org/dev/peps/pep-0617

Python Setup and Usage, Release 3.9.20

PYTHONPYCACHEPREFIX

If this is set, Python will write . pyc files in a mirror directory tree at this path, instead of in __pycache___
directories within the source tree. This is equivalent to specifying the —X pycache_prefix=PATH option.

New in version 3.8.

PYTHONHASHSEED

If this variable is not set or set to random, a random value is used to seed the hashes of str and bytes objects.

If PYTHONHASHSEED is set to an integer value, it is used as a fixed seed for generating the hash() of the types
covered by the hash randomization.

Its purpose is to allow repeatable hashing, such as for selftests for the interpreter itself, or to allow a cluster of
python processes to share hash values.

The integer must be a decimal number in the range [0,4294967295]. Specifying the value O will disable hash
randomization.

New in version 3.2.3.

PYTHONINTMAXSTRDIGITS

If this variable is set to an integer, it is used to configure the interpreter’s global integer string conversion length
limitation.

New in version 3.9.14.

PYTHONIOENCODING

If this is set before running the interpreter, it overrides the encoding used for stdin/stdout/stderr, in the syn-
tax encodingname:errorhandler. Both the encodingname and the : errorhandler parts are
optional and have the same meaning as in str.encode ().

For stderr, the : errorhandler part is ignored; the handler will always be 'backslashreplace’.
Changed in version 3.4: The encodingname part is now optional.

Changed in version 3.6: On Windows, the encoding specified by this variable is ignored for interactive console
buffers unless PYTHONLEGACYWINDOWSSTDIO is also specified. Files and pipes redirected through the
standard streams are not affected.

PYTHONNOUSERSITE

If this is set, Python won’t add the user site-packages directorytosys.path.
See also:

PEP 370 - Per user site-packages directory

PYTHONUSERBASE

Defines the user base directory,whichisusedtocompute the path of theuser site-packages
directory and Distutils installation paths for python setup.py install --user.

See also:

PEP 370 - Per user site-packages directory

PYTHONEXECUTABLE

If this environment variable is set, sys.argv [0] will be set to its value instead of the value got through the
C runtime. Only works on macOS.

PYTHONWARNINGS

This is equivalent to the —w option. If set to a comma separated string, it is equivalent to specifying —w
multiple times, with filters later in the list taking precedence over those earlier in the list.

The simplest settings apply a particular action unconditionally to all warnings emitted by a process (even those
that are otherwise ignored by default):

NINGS=default # Warn once per call location

Convert to exceptions
Warn every time

(continues on next page)

10

Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0370
https://www.python.org/dev/peps/pep-0370

Python Setup and Usage, Release 3.9.20

(continued from previous page)

Warn once per calling module

Warn once per Python process

RNINGS=ignore # Never warn

See warning-filter and describing-warning-filters for more details.

PYTHONFAULTHANDLER
If this environment variable is set to a non-empty string, faulthandler.enable () is called at startup:
install a handler for SIGSEGV, SIGFPE, SIGABRT, SIGBUS and SIGILL signals to dump the Python
traceback. This is equivalent to —X faulthandler option.

New in version 3.3.

PYTHONTRACEMALLOC
If this environment variable is set to a non-empty string, start tracing Python memory allocations using the
tracemalloc module. The value of the variable is the maximum number of frames stored in a traceback of a
trace. For example, PYTHONTRACEMALLOC=1 stores only the most recent frame. See the t racemalloc.
start () for more information.

New in version 3.4.

PYTHONPROFILEIMPORTTIME
If this environment variable is set to a non-empty string, Python will show how long each import takes. This
is exactly equivalent to setting —X importtime on the command line.

New in version 3.7.

PYTHONASYNCIODEBUG
If this environment variable is set to a non-empty string, enable the debug mode of the asyncio module.

New in version 3.4.

PYTHONMALLOC
Set the Python memory allocators and/or install debug hooks.

Set the family of memory allocators used by Python:
o default: use the default memory allocators.

e malloc: use the malloc () function of the C library for all domains (PYMEM_DOMAIN_RAW,
PYMEM_DOMAIN_MEM, PYMEM_DOMAIN_OBJ).

e pymalloc: use the pymalloc allocator for PYMEM_DOMAIN_MEM and PYMEM_DOMAIN_OBJ do-
mains and use the malloc () function for the PYMEM DOMAIN_ RAW domain.

Install debug hooks:
» debug: install debug hooks on top of the default memory allocators.
e malloc_debug: same as malloc but also install debug hooks.
e pymalloc_debug: same as pymalloc but also install debug hooks.

See the default memory allocators and the PyMem_SetupDebugHooks () function (install debug hooks
on Python memory allocators).

Changed in version 3.7: Added the "default" allocator.
New in version 3.6.

PYTHONMALLOCSTATS
If set to a non-empty string, Python will print statistics of the pymalloc memory allocator every time a new
pymalloc object arena is created, and on shutdown.

This variable is ignored if the PYTHONMALLOC environment variable is used to force themal loc () allocator
of the C library, or if Python is configured without pymalloc support.

Changed in version 3.6: This variable can now also be used on Python compiled in release mode. It now has
no effect if set to an empty string.

1.2. Environment variables 11

Python Setup and Usage, Release 3.9.20

PYTHONLEGACYWINDOWSFSENCODING
If set to a non-empty string, the default filesystem encoding and errors mode will revert to their pre-3.6 values
of ‘mbcs’ and ‘replace’, respectively. Otherwise, the new defaults ‘utf-8’ and ‘surrogatepass’ are used.

This may also be enabled at runtime with sys._enablelegacywindowsfsencoding ().
Availability: Windows.
New in version 3.6: See PEP 529 for more details.

PYTHONLEGACYWINDOWSSTDIO
If set to a non-empty string, does not use the new console reader and writer. This means that Unicode characters
will be encoded according to the active console code page, rather than using utf-8.

This variable is ignored if the standard streams are redirected (to files or pipes) rather than referring to console
buffers.

Availability: Windows.
New in version 3.6.

PYTHONCOERCECLOCALE
If set to the value 0, causes the main Python command line application to skip coercing the legacy ASCII-based
C and POSIX locales to a more capable UTF-8 based alternative.

If this variable is not set (or is set to a value other than 0), the LC_ALL locale override environment variable is
also not set, and the current locale reported for the LC_CTYPE category is either the default C locale, or else
the explicitly ASCII-based POSIX locale, then the Python CLI will attempt to configure the following locales
for the LC_CTYPE category in the order listed before loading the interpreter runtime:

e C.UTF-8
e C.utf8
e UTF-8

If setting one of these locale categories succeeds, then the LC_CTYPE environment variable will also be set
accordingly in the current process environment before the Python runtime is initialized. This ensures that in
addition to being seen by both the interpreter itself and other locale-aware components running in the same
process (such as the GNU readline library), the updated setting is also seen in subprocesses (regardless
of whether or not those processes are running a Python interpreter), as well as in operations that query the
environment rather than the current C locale (such as Python’s own 1locale.getdefaultlocale ()).

Configuring one of these locales (either explicitly or via the above implicit locale coercion) automatically
enables the surrogateescape error handler for sys.stdin and sys.stdout (sys.stderr con-
tinues to use backslashreplace as it does in any other locale). This stream handling behavior can be
overridden using PYTHONIOENCODING as usual.

For debugging purposes, setting PY THONCOERCECLOCALE=warn will cause Python to emit warning mes-
sages on stderr if either the locale coercion activates, or else if a locale that would have triggered coercion
is still active when the Python runtime is initialized.

Also note that even when locale coercion is disabled, or when it fails to find a suitable target locale,
PYTHONUTEF 8 will still activate by default in legacy ASCII-based locales. Both features must be disabled
in order to force the interpreter to use ASCIT instead of UTF -8 for system interfaces.
Availability: *nix.
New in version 3.7: See PEP 538 for more details.

PYTHONDEVMODE

If this environment variable is set to a non-empty string, enable Python Development Mode, introducing ad-
ditional runtime checks that are too expensive to be enabled by default.

New in version 3.7.

PYTHONUTF8
If set to 1, enables the interpreter's UTF-8 mode, where UTF-8 is used as the text encoding for system
interfaces, regardless of the current locale setting.

12 Chapter 1. Command line and environment

https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0538

Python Setup and Usage, Release 3.9.20

This means that:
e sys.getfilesystemencoding () returns 'UTF-8" (the locale encoding is ignored).

e locale.getpreferredencoding () returns 'UTF-8"' (the locale encoding is ignored, and the
function’s do_set locale parameter has no effect).

e sys.stdin, sys.stdout, and sys.stderr all use UTF-8 as their text encoding, with the
surrogateescape error handler being enabled for sys.stdin and sys.stdout (sys.
stderr continues to use backslashreplace as it does in the default locale-aware mode)

As a consequence of the changes in those lower level APIs, other higher level APIs also exhibit different default
behaviours:

o Command line arguments, environment variables and filenames are decoded to text using the UTF-8
encoding.

e os.fsdecode () and os.fsencode () use the UTF-8 encoding.

e open (), io.open (), and codecs.open () use the UTF-8 encoding by default. However, they
still use the strict error handler by default so that attempting to open a binary file in text mode is likely
to raise an exception rather than producing nonsense data.

Note that the standard stream settings in UTF-8 mode can be overridden by PYTHONIOENCODING (just as
they can be in the default locale-aware mode).

If set to 0, the interpreter runs in its default locale-aware mode.
Setting any other non-empty string causes an error during interpreter initialisation.

If this environment variable is not set at all, then the interpreter defaults to using the current lo-
cale settings, unless the current locale is identified as a legacy ASCII-based locale (as described for
PYTHONCOERCECLOCALE), and locale coercion is either disabled or fails. In such legacy locales, the inter-
preter will default to enabling UTF-8 mode unless explicitly instructed not to do so.

Also available as the —x ut £8 option.

New in version 3.7: See PEP 540 for more details.

1.2.1 Debug-mode variables

Setting these variables only has an effect in a debug build of Python.

PYTHONTHREADDEBUG
If set, Python will print threading debug info.

Need Python configured with the ——with-pydebug build option.

PYTHONDUMPREF'S
If set, Python will dump objects and reference counts still alive after shutting down the interpreter.

Need Python configured with the ——with-trace-refs build option.

1.2. Environment variables 13

https://www.python.org/dev/peps/pep-0540

Python Setup and Usage, Release 3.9.20

14 Chapter 1. Command line and environment

CHAPTER
TWO

USING PYTHON ON UNIX PLATFORMS

2.1 Getting and installing the latest version of Python

2.1.1 On Linux

Python comes preinstalled on most Linux distributions, and is available as a package on all others. However there
are certain features you might want to use that are not available on your distro’s package. You can easily compile the
latest version of Python from source.

In the event that Python doesn’t come preinstalled and isn’t in the repositories as well, you can easily make packages
for your own distro. Have a look at the following links:

See also:
https://www.debian.org/doc/manuals/maint-guide/first.en.html for Debian users
https://en.opensuse.org/Portal:Packaging for OpenSuse users

https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
for Fedora users

http://www.slackbook.org/html/package-management-making-packages.html for Slackware users

2.1.2 On FreeBSD and OpenBSD

o FreeBSD users, to add the package use:

pkg install python3

o OpenBSD users, to add the package use:

pkg_add -r python

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert your.
—architecture here>/python-<version>.tgz

For example 1386 users get the 2.5.1 version of Python using:

pkg_add ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

15

https://www.debian.org/doc/manuals/maint-guide/first.en.html
https://en.opensuse.org/Portal:Packaging
https://docs-old.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

Python Setup and Usage, Release 3.9.20

2.1.3 On OpenSolaris

You can get Python from OpenCSW. Various versions of Python are available and can be installed with e.g.
pkgutil -i python27.

2.2 Building Python

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh clone. (If you want to contribute patches, you will need a clone.)

The build process consists of the usual commands:

./configure
make
make install

Configuration options and caveats for specific Unix platforms are extensively documented in the README .rst file in
the root of the Python source tree.

Warning: make install can overwrite or masquerade the python3 binary. make altinstall
is therefore recommended instead of make install since it only installs exec _prefix/bin/
pythonversion.

2.3 Python-related paths and files

These are subject to difference depending on local installation conventions; prefix (${prefix}) and
exec_prefix (${exec_prefix}) are installation-dependent and should be interpreted as for GNU software;
they may be the same.

For example, on most Linux systems, the default for both is /usr.

File/directory Meaning

exec_prefix/bin/python3 Recommended location of the interpreter.
prefix/lib/pythonversion, Recommended locations of the directories containing the standard
exec_prefix/lib/ modules.

pythonversion

prefix/include/pythonversion, | Recommended locations of the directories containing the include
exec_prefix/include/ files needed for developing Python extensions and embedding the
pythonversion interpreter.

2.4 Miscellaneous

To easily use Python scripts on Unix, you need to make them executable, e.g. with

’$ chmod +x script

and put an appropriate Shebang line at the top of the script. A good choice is usually

’#l/usr/bin/env python3

which searches for the Python interpreter in the whole PATH. However, some Unices may not have the env command,
so you may need to hardcode /usr/bin/python3 as the interpreter path.

To use shell commands in your Python scripts, look at the subprocess module.

16 Chapter 2. Using Python on Unix platforms

https://www.opencsw.org/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
https://github.com/python/cpython/tree/3.9/README.rst

CHAPTER
THREE

USING PYTHON ON WINDOWS

This document aims to give an overview of Windows-specific behaviour you should know about when using Python
on Microsoft Windows.

Unlike most Unix systems and services, Windows does not include a system supported installation of Python. To
make Python available, the CPython team has compiled Windows installers (MSI packages) with every release for
many years. These installers are primarily intended to add a per-user installation of Python, with the core interpreter
and library being used by a single user. The installer is also able to install for all users of a single machine, and a
separate ZIP file is available for application-local distributions.

As specified in PEP 11, a Python release only supports a Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.9 supports Windows 8.1 and newer. If you require Windows 7
support, please install Python 3.8.

There are a number of different installers available for Windows, each with certain benefits and downsides.
The full installer contains all components and is the best option for developers using Python for any kind of project.

The Microsoft Store package is a simple installation of Python that is suitable for running scripts and packages, and us-
ing IDLE or other development environments. It requires Windows 10, but can be safely installed without corrupting
other programs. It also provides many convenient commands for launching Python and its tools.

The nuget.org packages are lightweight installations intended for continuous integration systems. It can be used to
build Python packages or run scripts, but is not updateable and has no user interface tools.

The embeddable package is a minimal package of Python suitable for embedding into a larger application.

3.1 The full installer

3.1.1 Installation steps

Four Python 3.9 installers are available for download - two each for the 32-bit and 64-bit versions of the interpreter.
The web installer is a small initial download, and it will automatically download the required components as neces-
sary. The offline installer includes the components necessary for a default installation and only requires an internet
connection for optional features. See Installing Without Downloading for other ways to avoid downloading during
installation.

After starting the installer, one of two options may be selected:

17

https://www.python.org/download/releases/
https://www.python.org/dev/peps/pep-0011

Python Setup and Usage, Release 3.9.20

&5 Python 2.8.0 (64-bit) Setup — 4

pgthfqn

Wiﬂd()WS [] Add Python 3.8 to PATH Trred

Install Python 3.8.0 (64-bit)

Select Install Mow to install Python with default settings, or choose
Customize to enable or disable features.

@ Install Now
Ch\Users' ol AppData\Local\Programs\Python'\Python38

Includes IDLE, pip and decumentaticn
Creates shortcuts and file associations

— Customize installation
Choose location and features

Install launcher for all users (recommended)

If you select “Install Now™:

You will not need to be an administrator (unless a system update for the C Runtime Library is required or you
install the Python Launcher for Windows for all users)

Python will be installed into your user directory

The Python Launcher for Windows will be installed according to the option at the bottom of the first page
The standard library, test suite, launcher and pip will be installed

If selected, the install directory will be added to your PATH

Shortcuts will only be visible for the current user

Selecting “Customize installation” will allow you to select the features to install, the installation location and other
options or post-install actions. To install debugging symbols or binaries, you will need to use this option.

To perform an all-users installation, you should select “Customize installation”. In this case:

You may be required to provide administrative credentials or approval

Python will be installed into the Program Files directory

The Python Launcher for Windows will be installed into the Windows directory
Optional features may be selected during installation

The standard library can be pre-compiled to bytecode

If selected, the install directory will be added to the system PATH

Shortcuts are available for all users

18

Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.9.20

3.1.2 Removing the MAX_PATH Limitation

Windows historically has limited path lengths to 260 characters. This meant that paths longer than this would not
resolve and errors would result.

In the latest versions of Windows, this limitation can be expanded to approximately 32,000 characters. Your admin-
istrator will need to activate the “Enable Win32 long paths” group policy, or set LongPathsEnabled to 1 in the
registry key HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\FileSystemn.

This allows the open () function, the os module and most other path functionality to accept and return paths longer
than 260 characters.

After changing the above option, no further configuration is required.

Changed in version 3.6: Support for long paths was enabled in Python.

3.1.3 Installing Without Ul

All of the options available in the installer Ul can also be specified from the command line, allowing scripted in-
stallers to replicate an installation on many machines without user interaction. These options may also be set without
suppressing the Ul in order to change some of the defaults.

To completely hide the installer UI and install Python silently, pass the /quiet option. To skip past the user
interaction but still display progress and errors, pass the /passive option. The /uninstall option may be
passed to immediately begin removing Python - no confirmation prompt will be displayed.

All other options are passed as name=value, where the value is usually O to disable a feature, 1 to enable a feature,
or a path. The full list of available options is shown below.

3.1. The full installer 19

Python Setup and Usage, Release 3.9.20

Name Description Default
Install Al- Perform a system-wide instal- | O
1Users lation.
TargetDir | The installation directory Selected based on InstallAllUsers
DefaultAl- | The default installation direc- | $ProgramFiles%\Python X.Y or
IUsersTar- | tory for all-user installs $ProgramFiles (x86) $\Python X.Y
getDir
Default- The default install directory | $LocalAppData%$\Programs\PythonXY or
Just- for just-for-me installs %$LocalAppData%\Programs\PythonXY-32 or
ForMeTar- $LocalAppData%$\Programs\PythonXY-64
getDir
Default- The default custom install di- | (empty)
Custom- rectory displayed in the Ul
TargetDir
Associate- | Create file associations if the | 1
Files launcher is also installed.
Com- Compile all .py files to . | O
pileAll pyc.
Prepend- Add install and Scripts direc- | 0
Path tories to PATH and .PY to
PATHEXT
Shortcuts Create shortcuts for the in- | 1
terpreter, documentation and
IDLE if installed.
In- Install Python manual 1
clude_doc
In- Install debug binaries 0
clude_debug
In- Install developer headers and | 1
clude _dev libraries
In- Install python.exe andre- | 1
clude_exe | lated files
In- Install Python Launcher for | 1
clude_launchedVindows.
Install- Installs Python Launcher for | 1
Launcher- Windows for all users.
AllUsers
In- Install standard library and | 1
clude_lib extension modules
In- Install bundled pip and setup- | 1
clude_pip tools
In- Install debugging symbols | O
clude_symbols(*.pdb)
In- Install Tcl/Tk support and | 1
clude_tcltk | IDLE
In- Install standard library test | 1
clude_test suite
In- Install utility scripts 1
clude_tools
LauncherOnlyOnly installs the launcher. | O
This will override most other
options.
Simpleln- Disable most install Ul 0
stall
Simple- A custom message to display | (empty)
InstallDe- when the simplified install UI
scription is used.
20 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.9.20

For example, to silently install a default, system-wide Python installation, you could use the following command (from
an elevated command prompt):

python-3.9.0.exe /quiet InstallAllUsers=1 PrependPath=1 Include_test=0

To allow users to easily install a personal copy of Python without the test suite, you could provide a shortcut with the
following command. This will display a simplified initial page and disallow customization:

python-3.9.0.exe InstallAllUsers=0 Include_launcher=0 Include_test=0
SimpleInstall=1 SimplelInstallDescription="Just for me, no test suite."

(Note that omitting the launcher also omits file associations, and is only recommended for per-user installs when there
is also a system-wide installation that included the launcher.)

The options listed above can also be provided in a file named unattend.xml alongside the executable. This file
specifies a list of options and values. When a value is provided as an attribute, it will be converted to a number if
possible. Values provided as element text are always left as strings. This example file sets the same options as the
previous example:

<Options>

<Option Name="InstallAllUsers" Value="no" />

<Option Name="Include_launcher" Value="0" />

<Option Name="Include_test" Value="no" />

<Option Name="SimpleInstall" Value="yes" />

<Option Name="SimplelInstallDescription">Just for me, no test suite</Option>
</Options>

3.1.4 Installing Without Downloading

As some features of Python are not included in the initial installer download, selecting those features may require an
internet connection. To avoid this need, all possible components may be downloaded on-demand to create a complete
layout that will no longer require an internet connection regardless of the selected features. Note that this download
may be bigger than required, but where a large number of installations are going to be performed it is very useful to
have a locally cached copy.

Execute the following command from Command Prompt to download all possible required files. Remember to
substitute python-3. 9. 0. exe for the actual name of your installer, and to create layouts in their own directories
to avoid collisions between files with the same name.

python-3.9.0.exe /layout [optional target directory]

You may also specify the /quiet option to hide the progress display.

3.1.5 Modifying an install

Once Python has been installed, you can add or remove features through the Programs and Features tool that is part
of Windows. Select the Python entry and choose “Uninstall/Change” to open the installer in maintenance mode.

“Modify” allows you to add or remove features by modifying the checkboxes - unchanged checkboxes will not install
or remove anything. Some options cannot be changed in this mode, such as the install directory; to modify these, you
will need to remove and then reinstall Python completely.

“Repair” will verify all the files that should be installed using the current settings and replace any that have been
removed or modified.

“Uninstall” will remove Python entirely, with the exception of the Python Launcher for Windows, which has its own
entry in Programs and Features.

3.1. The full installer 21

Python Setup and Usage, Release 3.9.20

3.2 The Microsoft Store package

New in version 3.7.2.

The Microsoft Store package is an easily installable Python interpreter that is intended mainly for interactive use, for
example, by students.

To install the package, ensure you have the latest Windows 10 updates and search the Microsoft Store app for “Python
3.9”. Ensure that the app you select is published by the Python Software Foundation, and install it.

Warning: Python will always be available for free on the Microsoft Store. If you are asked to pay for it, you
have not selected the correct package.

After installation, Python may be launched by finding it in Start. Alternatively, it will be available from any Command
Prompt or PowerShell session by typing python. Further, pip and IDLE may be used by typing pip or idle.
IDLE can also be found in Start.

All three commands are also available with version number suffixes, for example, aspython3.exeand python3.
x.exeaswellas python.exe (where 3. x is the specific version you want to launch, such as 3.9). Open “Manage
App Execution Aliases” through Start to select which version of Python is associated with each command. It is
recommended to make sure that pip and idle are consistent with whichever version of python is selected.

Virtual environments can be created with python —m venv and activated and used as normal.

If you have installed another version of Python and added it to your PATH variable, it will be available as python.
exe rather than the one from the Microsoft Store. To access the new installation, use python3.exe orpython3.
X.exe.

The py . exe launcher will detect this Python installation, but will prefer installations from the traditional installer.

To remove Python, open Settings and use Apps and Features, or else find Python in Start and right-click to select
Uninstall. Uninstalling will remove all packages you installed directly into this Python installation, but will not remove
any virtual environments

3.2.1 Known Issues

Because of restrictions on Microsoft Store apps, Python scripts may not have full write access to shared locations such
as TEMP and the registry. Instead, it will write to a private copy. If your scripts must modify the shared locations,
you will need to install the full installer.

For more detail on the technical basis for these limitations, please consult Microsoft’s documentation on packaged
full-trust apps, currently available at docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-
scenes

3.3 The nuget.org packages

New in version 3.5.2.

The nuget.org package is a reduced size Python environment intended for use on continuous integration and build
systems that do not have a system-wide install of Python. While nuget is “the package manager for .NET”, it also
works perfectly fine for packages containing build-time tools.

Visit nuget.org for the most up-to-date information on using nuget. What follows is a summary that is sufficient for
Python developers.

The nuget . exe command line tool may be downloaded directly from https://aka.ms/nugetclidl, for
example, using curl or PowerShell. With the tool, the latest version of Python for 64-bit or 32-bit machines is installed
using:

22 Chapter 3. Using Python on Windows

https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://docs.microsoft.com/en-us/windows/msix/desktop/desktop-to-uwp-behind-the-scenes
https://www.nuget.org/

Python Setup and Usage, Release 3.9.20

nuget.exe install python -ExcludeVersion -OutputDirectory .
nuget.exe install pythonx86 -ExcludeVersion -OutputDirectory .

To select a particular version, add a —Version 3.x.y. The output directory may be changed from ., and the
package will be installed into a subdirectory. By default, the subdirectory is named the same as the package, and
without the ~-ExcludeVersion option this name will include the specific version installed. Inside the subdirectory
isa tools directory that contains the Python installation:

Without -ExcludeVersion
> .\python.3.5.2\tools\python.exe -V
Python 3.5.2

With -ExcludeVersion
> .\python\tools\python.exe -V
Python 3.5.2

In general, nuget packages are not upgradeable, and newer versions should be installed side-by-side and referenced
using the full path. Alternatively, delete the package directory manually and install it again. Many CI systems will
do this automatically if they do not preserve files between builds.

Alongside the t ools directory isabuild\native directory. This contains a MSBuild properties file python.
props that can be used in a C++ project to reference the Python install. Including the settings will automatically
use the headers and import libraries in your build.

The package information pages on nuget.org are www.nuget.org/packages/python for the 64-bit version and
www.nuget.org/packages/pythonx86 for the 32-bit version.

3.4 The embeddable package

New in version 3.5.

The embedded distribution is a ZIP file containing a minimal Python environment. It is intended for acting as part
of another application, rather than being directly accessed by end-users.

When extracted, the embedded distribution is (almost) fully isolated from the user’s system, including environment
variables, system registry settings, and installed packages. The standard library is included as pre-compiled and
optimized .pyc files in a ZIP, and python3.d11, python37.d11, python.exe and pythonw.exe are
all provided. Tcl/tk (including all dependants, such as Idle), pip and the Python documentation are not included.

Note: The embedded distribution does not include the Microsoft C Runtime and it is the responsibility of the
application installer to provide this. The runtime may have already been installed on a user’s system previously or
automatically via Windows Update, and can be detected by finding ucrtbase.dl1l in the system directory.

Third-party packages should be installed by the application installer alongside the embedded distribution. Using pip
to manage dependencies as for a regular Python installation is not supported with this distribution, though with some
care it may be possible to include and use pip for automatic updates. In general, third-party packages should be
treated as part of the application (“vendoring”) so that the developer can ensure compatibility with newer versions
before providing updates to users.

The two recommended use cases for this distribution are described below.

3.4. The embeddable package 23

https://www.nuget.org/packages/python
https://www.nuget.org/packages/pythonx86
https://docs.microsoft.com/en-US/cpp/windows/latest-supported-vc-redist#visual-studio-2015-2017-2019-and-2022

Python Setup and Usage, Release 3.9.20

3.4.1 Python Application

An application written in Python does not necessarily require users to be aware of that fact. The embedded dis-
tribution may be used in this case to include a private version of Python in an install package. Depending on how
transparent it should be (or conversely, how professional it should appear), there are two options.

Using a specialized executable as a launcher requires some coding, but provides the most transparent experience for
users. With a customized launcher, there are no obvious indications that the program is running on Python: icons
can be customized, company and version information can be specified, and file associations behave properly. In most
cases, a custom launcher should simply be able to call Py_Main with a hard-coded command line.

The simpler approach is to provide a batch file or generated shortcut that directly calls the python.exe or
pythonw.exe with the required command-line arguments. In this case, the application will appear to be Python
and not its actual name, and users may have trouble distinguishing it from other running Python processes or file
associations.

With the latter approach, packages should be installed as directories alongside the Python executable to ensure they
are available on the path. With the specialized launcher, packages can be located in other locations as there is an
opportunity to specify the search path before launching the application.

3.4.2 Embedding Python

Applications written in native code often require some form of scripting language, and the embedded Python distri-
bution can be used for this purpose. In general, the majority of the application is in native code, and some part will
either invoke python . exe or directly use python3.d11. For either case, extracting the embedded distribution
to a subdirectory of the application installation is sufficient to provide a loadable Python interpreter.

As with the application use, packages can be installed to any location as there is an opportunity to specify search
paths before initializing the interpreter. Otherwise, there is no fundamental differences between using the embedded
distribution and a regular installation.

3.5 Alternative bundles

Besides the standard CPython distribution, there are modified packages including additional functionality. The fol-
lowing is a list of popular versions and their key features:

ActivePython Installer with multi-platform compatibility, documentation, PyWin32

Anaconda Popular scientific modules (such as numpy, scipy and pandas) and the conda package manager.
Canopy A “comprehensive Python analysis environment” with editors and other development tools.
WinPython Windows-specific distribution with prebuilt scientific packages and tools for building packages.

Note that these packages may not include the latest versions of Python or other libraries, and are not maintained or
supported by the core Python team.

3.6 Configuring Python

To run Python conveniently from a command prompt, you might consider changing some default environment vari-
ables in Windows. While the installer provides an option to configure the PATH and PATHEXT variables for you,
this is only reliable for a single, system-wide installation. If you regularly use multiple versions of Python, consider
using the Python Launcher for Windows.

24 Chapter 3. Using Python on Windows

https://www.activestate.com/activepython/
https://www.anaconda.com/download/
https://www.enthought.com/product/canopy/
https://winpython.github.io/

Python Setup and Usage, Release 3.9.20

3.6.1 Excursus: Setting environment variables

Windows allows environment variables to be configured permanently at both the User level and the System level, or
temporarily in a command prompt.

To temporarily set environment variables, open Command Prompt and use the set command:

C:\>set PATH=C:\Program Files\Python 3.9;%PATH%
C:\>set PYTHONPATH=%PYTHONPATHS%;C:\My_python_1lib
C:\>python

These changes will apply to any further commands executed in that console, and will be inherited by any applications
started from the console.

Including the variable name within percent signs will expand to the existing value, allowing you to add your new
value at either the start or the end. Modifying PATH by adding the directory containing python . exe to the start
is a common way to ensure the correct version of Python is launched.

To permanently modify the default environment variables, click Start and search for ‘edit environment variables’, or
open System properties, Advanced system settings and click the Environment Variables button. In this dialog, you
can add or modify User and System variables. To change System variables, you need non-restricted access to your
machine (i.e. Administrator rights).

Note: Windows will concatenate User variables after System variables, which may cause unexpected results when
modifying PATH.

The PYTHONPATH variable is used by all versions of Python, so you should not permanently configure it unless the
listed paths only include code that is compatible with all of your installed Python versions.

See also:

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables Overview of environ-
ment variables on Windows

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1 The set
command, for temporarily modifying environment variables

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx The setx
command, for permanently modifying environment variables

3.6.2 Finding the Python executable

Changed in version 3.5.

Besides using the automatically created start menu entry for the Python interpreter, you might want to start Python
in the command prompt. The installer has an option to set that up for you.

On the first page of the installer, an option labelled “Add Python to PATH” may be selected to have the installer
add the install location into the PATH. The location of the Scripts\ folder is also added. This allows you to type
python to run the interpreter, and pip for the package installer. Thus, you can also execute your scripts with
command line options, see Command line documentation.

If you don’t enable this option at install time, you can always re-run the installer, select Modify, and enable it. Alterna-
tively, you can manually modify the PATH using the directions in Excursus: Setting environment variables. You need
to set your PATH environment variable to include the directory of your Python installation, delimited by a semicolon
from other entries. An example variable could look like this (assuming the first two entries already existed):

C:\WINDOWS\system32;C:\WINDOWS;C:\Program Files\Python 3.9

3.6. Configuring Python 25

https://docs.microsoft.com/en-us/windows/win32/procthread/environment-variables
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/set_1
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

Python Setup and Usage, Release 3.9.20

3.7 UTF-8 mode

New in version 3.7.

Windows still uses legacy encodings for the system encoding (the ANSI Code Page). Python uses it for the default
encoding of text files (e.g. locale.getpreferredencoding()).

This may cause issues because UTF-8 is widely used on the internet and most Unix systems, including WSL (Windows
Subsystem for Linux).

You can use UTF-8 mode to change the default text encoding to UTF-8. You can enable UTF-8 mode via the —X
ut £8 command line option, or the PYTHONUTF 8=1 environment variable. See PYTHONUTF 8 for enabling UTF-8
mode, and Excursus: Setting environment variables for how to modify environment variables.

When UTF-8 mode is enabled:

e locale.getpreferredencoding () returns 'UTF-8"' instead of the system encoding. This function
is used for the default text encoding in many places, including open (), Popen, Path.read_text (),
etc.

e sys.stdin, sys.stdout, and sys.stderr all use UTF-8 as their text encoding.
» You can still use the system encoding via the “mbcs” codec.

Note that adding PYTHONUTF 8=1 to the default environment variables will affect all Python 3.7+ applications on
your system. If you have any Python 3.7+ applications which rely on the legacy system encoding, it is recommended
to set the environment variable temporarily or use the -X ut £8 command line option.

Note: Even when UTF-8 mode is disabled, Python uses UTF-8 by default on Windows for:
« Console I/0 including standard I/O (see PEP 528 for details).
« The filesystem encoding (see PEP 529 for details).

3.8 Python Launcher for Windows

New in version 3.3.

The Python launcher for Windows is a utility which aids in locating and executing of different Python versions. It
allows scripts (or the command-line) to indicate a preference for a specific Python version, and will locate and execute
that version.

Unlike the PATH variable, the launcher will correctly select the most appropriate version of Python. It will prefer per-
user installations over system-wide ones, and orders by language version rather than using the most recently installed
version.

The launcher was originally specified in PEP 397.

3.8.1 Getting started

From the command-line

Changed in version 3.6.

System-wide installations of Python 3.3 and later will put the launcher on your PATH. The launcher is compatible
with all available versions of Python, so it does not matter which version is installed. To check that the launcher is
available, execute the following command in Command Prompt:

19

26 Chapter 3. Using Python on Windows

https://www.python.org/dev/peps/pep-0528
https://www.python.org/dev/peps/pep-0529
https://www.python.org/dev/peps/pep-0397

Python Setup and Usage, Release 3.9.20

You should find that the latest version of Python you have installed is started - it can be exited as normal, and any
additional command-line arguments specified will be sent directly to Python.

If you have multiple versions of Python installed (e.g., 3.7 and 3.9) you will have noticed that Python 3.9 was started
- to launch Python 3.7, try the command:

’py -3.7

If you want the latest version of Python 2 you have installed, try the command:

’py -2

You should find the latest version of Python 3.x starts.

If you see the following error, you do not have the launcher installed:

'py' is not recognized as an internal or external command,
operable program or batch file.

Per-user installations of Python do not add the launcher to PATH unless the option was selected on installation.

The command:

’py --list

displays the currently installed version(s) of Python.

Virtual environments

New in version 3.5.

If the launcher is run with no explicit Python version specification, and a virtual environment (created with the stan-
dard library venv module or the external virtualenv tool) active, the launcher will run the virtual environment’s
interpreter rather than the global one. To run the global interpreter, either deactivate the virtual environment, or
explicitly specify the global Python version.

From a script

Let’s create a test Python script - create a file called hello . py with the following contents

#! python
import sys
sys.stdout.write("hello from Python \n" % (sys.version,))

From the directory in which hello.py lives, execute the command:

’py hello.py

You should notice the version number of your latest Python 2.x installation is printed. Now try changing the first line
to be:

’#l python3

Re-executing the command should now print the latest Python 3.x information. As with the above command-line
examples, you can specify a more explicit version qualifier. Assuming you have Python 3.7 installed, try changing
the firstline to #! python3. 7 and you should find the 3.9 version information printed.

Note that unlike interactive use, a bare “python” will use the latest version of Python 2.x that you have installed.
This is for backward compatibility and for compatibility with Unix, where the command python typically refers to
Python 2.

3.8. Python Launcher for Windows 27

Python Setup and Usage, Release 3.9.20

From file associations

The launcher should have been associated with Python files (i.e. .py, .pyw, .pyc files) when it was installed.
This means that when you double-click on one of these files from Windows explorer the launcher will be used, and
therefore you can use the same facilities described above to have the script specify the version which should be used.

The key benefit of this is that a single launcher can support multiple Python versions at the same time depending on
the contents of the first line.

3.8.2 Shebang Lines

If the first line of a script file starts with # !, it is known as a “shebang” line. Linux and other Unix like operating
systems have native support for such lines and they are commonly used on such systems to indicate how a script
should be executed. This launcher allows the same facilities to be used with Python scripts on Windows and the
examples above demonstrate their use.

To allow shebang lines in Python scripts to be portable between Unix and Windows, this launcher supports a number
of ‘virtual’ commands to specify which interpreter to use. The supported virtual commands are:

e /usr/bin/env python

e /usr/bin/python

e /usr/local/bin/python
e python

For example, if the first line of your script starts with

#! Jusr/bin/python

The default Python will be located and used. As many Python scripts written to work on Unix will already have this
line, you should find these scripts can be used by the launcher without modification. If you are writing a new script
on Windows which you hope will be useful on Unix, you should use one of the shebang lines starting with /usr.

Any of the above virtual commands can be suffixed with an explicit version (either just the major version, or the
major and minor version). Furthermore the 32-bit version can be requested by adding “-32” after the minor version.
Le. /usr/bin/python3.7-32 will request usage of the 32-bit python 3.7.

New in version 3.7: Beginning with python launcher 3.7 it is possible to request 64-bit version by the “-64” suffix.
Furthermore it is possible to specify a major and architecture without minor (i.e. /usr/bin/python3-64).

The /usr/bin/env form of shebang line has one further special property. Before looking for installed Python
interpreters, this form will search the executable PATH for a Python executable. This corresponds to the behaviour
of the Unix env program, which performs a PATH search.

3.8.3 Arguments in shebang lines

The shebang lines can also specify additional options to be passed to the Python interpreter. For example, if you have
a shebang line:

#! /usr/bin/python -v

Then Python will be started with the —v option

28 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.9.20

3.8.4 Customization
Customization via INI files

Two .ini files will be searched by the launcher - py . ini in the current user’s “application data” directory (i.e. the
directory returned by calling the Windows function SHGetFolderPath with CSIDL_LOCAL_APPDATA) and
py.ini in the same directory as the launcher. The same .ini files are used for both the ‘console’ version of the
launcher (i.e. py.exe) and for the ‘windows’ version (i.e. pyw.exe).

Customization specified in the “application directory” will have precedence over the one next to the executable, so a
user, who may not have write access to the .ini file next to the launcher, can override commands in that global .ini
file.

Customizing default Python versions

In some cases, a version qualifier can be included in a command to dictate which version of Python will be used by
the command. A version qualifier starts with a major version number and can optionally be followed by a period (*.")
and a minor version specifier. Furthermore it is possible to specify if a 32 or 64 bit implementation shall be requested
by adding “-32” or “-64”.

For example, a shebang line of # ! python has no version qualifier, while # ! pyt hon3 has a version qualifier which
specifies only a major version.

If no version qualifiers are found in a command, the environment variable PY_PYTHON can be set to specify the
default version qualifier. If it is not set, the default is “3”. The variable can specify any value that may be passed on
the command line, such as “3”, “3.77, “3.7-32” or “3.7-64”. (Note that the “-64” option is only available with the
launcher included with Python 3.7 or newer.)

If no minor version qualifiers are found, the environment variable PY_PYTHON{major} (where {major} is the
current major version qualifier as determined above) can be set to specify the full version. If no such option is found,
the launcher will enumerate the installed Python versions and use the latest minor release found for the major version,
which is likely, although not guaranteed, to be the most recently installed version in that family.

On 64-bit Windows with both 32-bit and 64-bit implementations of the same (major.minor) Python version installed,
the 64-bit version will always be preferred. This will be true for both 32-bit and 64-bit implementations of the
launcher - a 32-bit launcher will prefer to execute a 64-bit Python installation of the specified version if available.
This is so the behavior of the launcher can be predicted knowing only what versions are installed on the PC and
without regard to the order in which they were installed (i.e., without knowing whether a 32 or 64-bit version of
Python and corresponding launcher was installed last). As noted above, an optional “-32” or “-64” suffix can be used
on a version specifier to change this behaviour.

Examples:

« If no relevant options are set, the commands python and python2 will use the latest Python 2.x version
installed and the command python3 will use the latest Python 3.x installed.

o The command python3. 7 will not consult any options at all as the versions are fully specified.
o If PY_PYTHON=3, the commands python and python3 will both use the latest installed Python 3 version.

o If PY PYTHON=3.7-32, the command python will use the 32-bit implementation of 3.7 whereas the
command python3 will use the latest installed Python (PY_PYTHON was not considered at all as a major
version was specified.)

e If PY_PYTHON=3 and PY_PYTHON3=3. 7, the commands python and python3 will both use specifi-
cally 3.7

In addition to environment variables, the same settings can be configured in the .INI file used by the launcher. The
section in the INI file is called [defaults] and the key name will be the same as the environment variables
without the leading PY__ prefix (and note that the key names in the INI file are case insensitive.) The contents of an
environment variable will override things specified in the INI file.

For example:

3.8. Python Launcher for Windows 29

Python Setup and Usage, Release 3.9.20

« Setting PY_PYTHON=3. 7 is equivalent to the INI file containing:

[defaults]
python=3.7

o Setting PY_PYTHON=3 and PY_PYTHON3=3. 7 is equivalent to the INI file containing:

[defaults]
python=3
python3=3.7

3.8.5 Diagnostics

If an environment variable PYLAUNCH_DEBUG is set (to any value), the launcher will print diagnostic information
to stderr (i.e. to the console). While this information manages to be simultaneously verbose and terse, it should allow
you to see what versions of Python were located, why a particular version was chosen and the exact command-line
used to execute the target Python.

3.9 Finding modules

Python usually stores its library (and thereby your site-packages folder) in the installation directory. So, if you had
installed Python to C: \Python\, the default library would reside in C: \Python\Lib\ and third-party modules
should be stored in C: \Python\Lib\site-packages\.

To completely override sys .path, create a ._pth file with the same name as the DLL (python37._pth) or
the executable (python._pth) and specify one line for each path to add to sys.path. The file based on the
DLL name overrides the one based on the executable, which allows paths to be restricted for any program loading
the runtime if desired.

When the file exists, all registry and environment variables are ignored, isolated mode is enabled, and site is not
imported unless one line in the file specifies import site. Blank paths and lines starting with # are ignored. Each
path may be absolute or relative to the location of the file. Import statements other than to site are not permitted,
and arbitrary code cannot be specified.

Note that . pth files (without leading underscore) will be processed normally by the site module when import
site has been specified.

When no ._pth file is found, this is how sys.path is populated on Windows:
« An empty entry is added at the start, which corresponds to the current directory.

« If the environment variable P Y THONPATH exists, as described in Environment variables, its entries are added
next. Note that on Windows, paths in this variable must be separated by semicolons, to distinguish them from
the colon used in drive identifiers (C: \ etc.).

o Additional “application paths” can be added in the registry as subkeys of \SOFTWARE\
Python\PythonCore{version}\PythonPath under both the HKEY_CURRENT_USER and
HKEY_LOCAL_MACHINE hives. Subkeys which have semicolon-delimited path strings as their default value
will cause each path to be added to sys.path. (Note that all known installers only use HKLM, so HKCU
is typically empty.)

« If the environment variable PYTHONHOME is set, it is assumed as “Python Home”. Otherwise, the path of
the main Python executable is used to locate a “landmark file” (either Lib\os.py or pythonXY. zip)
to deduce the “Python Home”. If a Python home is found, the relevant sub-directories added to sys.path
(Lib, plat-win, etc) are based on that folder. Otherwise, the core Python path is constructed from the
PythonPath stored in the registry.

o If the Python Home cannot be located, no PYTHONPATH is specified in the environment, and no registry
entries can be found, a default path with relative entries is used (e.g. . \Lib; .\plat-win, etc).

30 Chapter 3. Using Python on Windows

Python Setup and Usage, Release 3.9.20

If a pyvenv. cfgfile is found alongside the main executable or in the directory one level above the executable, the
following variations apply:

» If home is an absolute path and PYTHONHOME is not set, this path is used instead of the path to the main
executable when deducing the home location.

The end result of all this is:

o When running python . exe, or any other .exe in the main Python directory (either an installed version, or
directly from the PCbuild directory), the core path is deduced, and the core paths in the registry are ignored.
Other “application paths” in the registry are always read.

« When Python is hosted in another .exe (different directory, embedded via COM, etc), the “Python Home” will
not be deduced, so the core path from the registry is used. Other “application paths” in the registry are always
read.

« If Python can’t find its home and there are no registry value (frozen .exe, some very strange installation setup)
you get a path with some default, but relative, paths.

For those who want to bundle Python into their application or distribution, the following advice will prevent conflicts
with other installations:

« Include a . _pth file alongside your executable containing the directories to include. This will ignore paths
listed in the registry and environment variables, and also ignore site unless import site is listed.

o If you are loading python3.dll or python37.d1ll in your own executable, explicitly call
Py_SetPath () or (atleast) Py_SetProgramName () before Py_Initialize ().

 Clear and/or overwrite PYTHONPATH and set PYTHONHOME before launching python.exe from your
application.

« If you cannot use the previous suggestions (for example, you are a distribution that allows people to run
python.exe directly), ensure that the landmark file (Lib\os.py) exists in your install directory. (Note
that it will not be detected inside a ZIP file, but a correctly named ZIP file will be detected instead.)

These will ensure that the files in a system-wide installation will not take precedence over the copy of the standard
library bundled with your application. Otherwise, your users may experience problems using your application. Note
that the first suggestion is the best, as the others may still be susceptible to non-standard paths in the registry and user
site-packages.

Changed in version 3.6:
e Adds ._pth file support and removes applocal option from pyvenv.cfg.
e Adds pythonXX. zip as a potential landmark when directly adjacent to the executable.

Deprecated since version 3.6: Modules specified in the registry under Modules (not PythonPath)
may be imported by importlib.machinery.WindowsRegistryFinder. This finder is en-
abled on Windows in 3.6.0 and earlier, but may need to be explicitly added to sys.meta_path in
the future.

3.10 Additional modules

Even though Python aims to be portable among all platforms, there are features that are unique to Windows. A couple
of modules, both in the standard library and external, and snippets exist to use these features.

The Windows-specific standard modules are documented in mswin-specific-services.

3.10. Additional modules 31

Python Setup and Usage, Release 3.9.20

3.10.1 PyWin32

The PyWin32 module by Mark Hammond is a collection of modules for advanced Windows-specific support. This
includes utilities for:

o Component Object Model (COM)
o Win32 API calls
o Registry
» Event log
e Microsoft Foundation Classes (MFC) user interfaces
PythonWin is a sample MFC application shipped with PyWin32. It is an embeddable IDE with a built-in debugger.
See also:
Win32 How Do I...? by Tim Golden
Python and COM by David and Paul Boddie

3.10.2 cx_Freeze

cx_Freeze isa distutils extension (see extending-distutils) which wraps Python scripts into executable Windows
programs (*. exe files). When you have done this, you can distribute your application without requiring your users
to install Python.

3.11 Compiling Python on Windows

If you want to compile CPython yourself, first thing you should do is get the source. You can download either the
latest release’s source or just grab a fresh checkout.

The source tree contains a build solution and project files for Microsoft Visual Studio, which is the compiler used to
build the official Python releases. These files are in the PCbuild directory.

Check PCbuild/readme.txt for general information on the build process.

For extension modules, consult building-on-windows.

3.12 Other Platforms

With ongoing development of Python, some platforms that used to be supported earlier are no longer supported (due
to the lack of users or developers). Check PEP 11 for details on all unsupported platforms.

« Windows CE is no longer supported since Python 3 (if it ever was).
o The Cygwin installer offers to install the Python interpreter as well

See Python for Windows for detailed information about platforms with pre-compiled installers.

32 Chapter 3. Using Python on Windows

https://pypi.org/project/pywin32
https://docs.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://docs.microsoft.com/en-us/cpp/mfc/mfc-desktop-applications
https://web.archive.org/web/20060524042422/https://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
https://www.boddie.org.uk/python/COM.html
https://cx-freeze.readthedocs.io/en/latest/
https://www.python.org/downloads/source/
https://devguide.python.org/setup/#getting-the-source-code
https://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
https://github.com/python/cpython/issues/71542
https://cygwin.com/
https://cygwin.com/packages/summary/python3.html
https://www.python.org/downloads/windows/

CHAPTER
FOUR

USING PYTHON ON A MAC

Author Bob Savage <bobsavage@mac.com>

Python on a Mac running macOS is in principle very similar to Python on any other Unix platform, but there are a
number of additional features such as the IDE and the Package Manager that are worth pointing out.

4.1 Getting and Installing MacPython

macOS since version 10.8 comes with Python 2.7 pre-installed by Apple. If you wish, you are invited to install the
most recent version of Python 3 from the Python website (https://www.python.org). A current “universal binary”
build of Python, which runs natively on the Mac’s new Intel and legacy PPC CPU's, is available there.

What you get after installing is a number of things:

e A Python 3.9 folder in your Applications folder. In here you find IDLE, the development envi-
ronment that is a standard part of official Python distributions; and PythonLauncher, which handles double-
clicking Python scripts from the Finder.

e A framework /Library/Frameworks/Python.framework, which includes the Python executable
and libraries. The installer adds this location to your shell path. To uninstall MacPython, you can simply
remove these three things. A symlink to the Python executable is placed in /usr/local/bin/.

The Apple-provided build of Python is installed in /System/Library/Frameworks/Python. framework
and /usr/bin/python, respectively. You should never modify or delete these, as they are Apple-controlled and
are used by Apple- or third-party software. Remember that if you choose to install a newer Python version from
python.org, you will have two different but functional Python installations on your computer, so it will be important
that your paths and usages are consistent with what you want to do.

IDLE includes a help menu that allows you to access Python documentation. If you are completely new to Python
you should start reading the tutorial introduction in that document.

If you are familiar with Python on other Unix platforms you should read the section on running Python scripts from
the Unix shell.

4.1.1 How to run a Python script

Your best way to get started with Python on macOS is through the IDLE integrated development environment, see
section The IDE and use the Help menu when the IDE is running.

If you want to run Python scripts from the Terminal window command line or from the Finder you first need
an editor to create your script. macOS comes with a number of standard Unix command line editors, vim
and emacs among them. If you want a more Mac-like editor, BBEdit or TextWrangler from Bare Bones
Software (see http://www.barebones.com/products/bbedit/index.html) are good choices, as is TextMate (see
https://macromates.com/). Other editors include Gvim (http://macvim-dev.github.io/macvim/) and Aquamacs
(http://aquamacs.org/).

To run your script from the Terminal window you must make sure that /usr/local/bin is in your shell search
path.

33

mailto:bobsavage@mac.com
https://www.python.org
http://www.barebones.com/products/bbedit/index.html
https://macromates.com/
http://macvim-dev.github.io/macvim/
http://aquamacs.org/

Python Setup and Usage, Release 3.9.20

To run your script from the Finder you have two options:
o Drag it to PythonLauncher

» Select PythonLauncher as the default application to open your script (or any .py script) through the finder
Info window and double-click it. PythonLauncher has various preferences to control how your script
is launched. Option-dragging allows you to change these for one invocation, or use its Preferences menu to
change things globally.

4.1.2 Running scripts with a GUI

With older versions of Python, there is one macOS quirk that you need to be aware of: programs that talk to the
Aqua window manager (in other words, anything that has a GUI) need to be run in a special way. Use pythonw
instead of python to start such scripts.

With Python 3.9, you can use either python or pythonw.

4.1.3 Configuration

Python on macOS honors all standard Unix environment variables such as PYTHONPATH, but setting these variables
for programs started from the Finder is non-standard as the Finder does not read your .profile or .cshrc
at startup. You need to create a file ~/ .MacOSX/environment.plist. See Apple’s Technical Document
QA1067 for details.

For more information on installation Python packages in MacPython, see section Installing Additional Python Pack-
ages.

4.2 The IDE

MacPython ships with the standard IDLE development environment. A good introduction to using IDLE can be
found at http://www.hashcollision.org/hkn/python/idle_intro/index.html.

4.3 Installing Additional Python Packages

There are several methods to install additional Python packages:
« Packages can be installed via the standard Python distutils mode (python setup.py install).

« Many packages can also be installed via the setuptools extension or pip wrapper, see https://pip.pypa.io/.

4.4 GUI Programming on the Mac

There are several options for building GUI applications on the Mac with Python.

PyObjC is a Python binding to Apple’s Objective-C/Cocoa framework, which is the foundation of most modern Mac
development. Information on PyObjC is available from https://pypi.org/project/pyobjc/.

The standard Python GUI toolkit is tkinter, based on the cross-platform Tk toolkit (https://www.tcl.tk). An
Aqua-native version of Tk is bundled with OS X by Apple, and the latest version can be downloaded and installed
from https://www.activestate.com; it can also be built from source.

wxPython is another popular cross-platform GUI toolkit that runs natively on macOS. Packages and documentation
are available from https://www.wxpython.org.

PyQt is another popular cross-platform GUI toolkit that runs natively on macOS. More information can be found at
https://riverbankcomputing.com/software/pyqt/intro.

34 Chapter 4. Using Python on a Mac

http://www.hashcollision.org/hkn/python/idle_intro/index.html
https://pip.pypa.io/
https://pypi.org/project/pyobjc/
https://www.tcl.tk
https://www.activestate.com
https://www.wxpython.org
https://riverbankcomputing.com/software/pyqt/intro

Python Setup and Usage, Release 3.9.20

4.5 Distributing Python Applications on the Mac

The standard tool for deploying standalone Python applications on the Mac is py2app. More information on in-
stalling and using py2app can be found at https://pypi.org/project/py2app/.

4.6 Other Resources

The MacPython mailing list is an excellent support resource for Python users and developers on the Mac:
https://www.python.org/community/sigs/current/pythonmac-sig/
Another useful resource is the MacPython wiki:

https://wiki.python.org/moin/MacPython

4.5. Distributing Python Applications on the Mac 35

https://pypi.org/project/py2app/
https://www.python.org/community/sigs/current/pythonmac-sig/
https://wiki.python.org/moin/MacPython

Python Setup and Usage, Release 3.9.20

36

Chapter 4. Using Python on a Mac

CHAPTER
FIVE

EDITORS AND IDES

There are a number of IDEs that support Python programming language. Many editors and IDEs provide syntax
highlighting, debugging tools, and PEP 8 checks.

Please go to Python Editors and Integrated Development Environments for a comprehensive list.

37

https://www.python.org/dev/peps/pep-0008
https://wiki.python.org/moin/PythonEditors
https://wiki.python.org/moin/IntegratedDevelopmentEnvironments

Python Setup and Usage, Release 3.9.20

38

Chapter 5. Editors and IDEs

APPENDIX
A

GLOSSARY

>>> The default Python prompt of the interactive shell. Often seen for code examples which can be executed
interactively in the interpreter.

. Can refer to:

o The default Python prompt of the interactive shell when entering the code for an indented code block,

when within a pair of matching left and right delimiters (parentheses, square brackets, curly braces or
triple quotes), or after specifying a decorator.

e The E11ipsis built-in constant.

2to3 A tool that tries to convert Python 2.x code to Python 3.x code by handling most of the incompatibilities which
can be detected by parsing the source and traversing the parse tree.

2to3 is available in the standard library as 1ib2to3; a standalone entry point is provided as Tools/
scripts/2to3. See 2to3-reference.

abstract base class Abstract base classes complement duck-typing by providing a way to define interfaces when
other techniques like hasattr () would be clumsy or subtly wrong (for example with magic methods).
ABCs introduce virtual subclasses, which are classes that don’t inherit from a class but are still recognized
by isinstance () and issubclass (); see the abc module documentation. Python comes with many
built-in ABCs for data structures (in the collections.abc module), numbers (in the numbers module),
streams (in the i o module), import finders and loaders (in the importlib.abc module). You can create
your own ABCs with the abc module.

annotation A label associated with a variable, a class attribute or a function parameter or return value, used by
convention as a type hint.

Annotations of local variables cannot be accessed at runtime, but annotations of global variables, class at-
tributes, and functions are stored in the __annotations___ special attribute of modules, classes, and func-
tions, respectively.

See variable annotation, function annotation, PEP 484 and PEP 526, which describe this functionality.

argument A value passed to a function (or method) when calling the function. There are two kinds of argument:

keyword argument: an argument preceded by