The Python Library Reference
Release 3.9.20

Guido van Rossum
and the Python development team

September 09, 2024

Python Software Foundation
Email: docs@python.org

Introduction

1.1

Notes on availability

Built-in Functions

Built-in Constants

3.1 Constants added by the site module
Built-in Types
4.1 Truth Value Testing
4.2 Boolean Operations — and, or, not
4.3
4.4 Numeric Types — int, float, complex
4.4.1 Bitwise Operations on Integer Types
4.4.2 Additional Methods on Integer Types
4.4.3 Additional Methods on Float
4.4.4 Hashing of numeric types
4.5
4.5.1 Generator Types
4.6 Sequence Types — list, tuple, range
4.6.1 Common Sequence Operations
4.6.2 Immutable Sequence Types
4.6.3 Mutable Sequence Types
4.7 Text Sequence Type — str
47.1 String Methods
4.7.2 printf-style String Formatting
4.8
4.8.1 Bytes Objects
4.8.2 Bytearray Objects
4.8.3 Bytes and Bytearray Operations
4.8.4 printf-style Bytes Formatting
4.8.5 Memory Views
4.9 Set Types — set, frozenset
4.10 Mapping Types — dict
4.10.1 Dictionary view objects
4.11 Context Manager Types
4.12 Generic Alias Type
4.12.1 Standard Generic Classes
4.13 Other Built-in Types

Comparisons u e e

Iterator Types

464 Lists o
465 Tuples
466 Ranges.

Binary Sequence Types — bytes, bytearray, memoryview

4.12.2 Special Attributes of GenericAlias objects

4.13.1 Modules

CONTENTS

......................... 36

......................... 86

4.13.2 Classesand Class Instances o o v v v v i i e e e e e e 86

4.13.3 Functions 86
4134 Methods L e 86
4135 Code Objects e 87
4.13.6 Type Objects o o i e e e e 87
41377 The NullObject o e 87
4.13.8 The Ellipsis Object o o i i i e e e e e e e e e e e e 87
4.13.9 The NotImplemented Object it 87
4.13.10 Boolean Values e 88
4.13.11 Internal Objects L e 88
4.14 Special Attributes e e e e e e 88
4.15 Integer string conversion length limitation L oo, 89
4.15.1 Affected APIs e 90
4.15.2 Configuring the limit e 90
4.15.3 Recommended configuration Lol e e 91
Built-in Exceptions 93
5.1 EXCEeption CONTEXL v v v v v vttt e e e e e e e e e e e e e e e e e 93
5.2 Inheriting from built-in exceptions Lo oL o 94
5.3 Baseclasses e e e e e e e e 94
5.4 Concrete €XCePiONS . v v v v v v v v e 95
541 OSexCeptions v v v v it e e e e e e e e e e e e e e e e e 99
5.5 Warnings L e e e e e e e e e e e e 100
5.6 Exceptionhierarchy e 101
Text Processing Services 103
6.1 string— Common String OPerations e et e e e 103
6.1.1 Stringconstants Lo e e 103
6.1.2 Custom String Formatting e 104
6.1.3 Format String Syntax e e e e e e e e e e e 105
6.1.4 Template Strings o v v v v e e e e e e e e e e e e e e e e e 112
6.1.5 Helperfunctions 113
6.2 re — Regular expression Operationso o i e e e 114
6.2.1 Regular Expression Syntaxo e 114
6.2.2 Module Contents e e e e e 119
6.2.3 Regular Expression Objects i it e e e e 123
6.2.4 Match Objects v it e e e e e e e e e e e e 125
6.2.5 Regular Expression Examples L oo 127
6.3 difflib — Helpers for computingdeltas 132
6.3.1 SequenceMatcher Objects 137
6.3.2 SequenceMatcher Examples e 139
6.3.3 Differ Objects o e e e e e e e e e e e 140
6.34 DifferExample e 140
6.3.5 A command-line interface todifflibo oL o oo 141
6.4 textwrap — Textwrappingandfilling 143
6.5 unicodedata —Unicode Database 146
6.6 stringprep — Internet String Preparation e 148
6.7 readline — GNUreadlineinterface 149
6.7.1 Imitfile. 150
6.7.2 Linebuffer. e 150
6.7.3 Historyfile. e e e 150
6.7.4 History list. o e e e e e e e e e 151
6.7.5 Startuphooks e e e e 151
6.7.6 Completion e e e e 152
6.7.77 Example 152
6.8 rlcompleter — Completion function for GNU readline 153
6.8.1 Completer Objects i i i e e e e e e e e e e e e 154

7 Binary Data Services 155

7.1 struct — Interpret bytes as packed binarydata L L., 155
7.1.1 Functions and Exceptions e e 155

7.1.2 0 Format Strings« c v v v e e e e e e e e e e e e e e e e 156

T3 CIasses . . v v v v e e e e e e e e e e 159

7.2 codecs — Codecregistryand base classes oo 160
7.2.1 Codec Base Classes v v i i ittt e e 162

7.2.2 Encodingsand Unicode e 169

7.23 Standard Encodings Lo 170

7.24 Python Specific Encodings 173

7.2.5 encodings.idna — Internationalized Domain Names in Applications 175

7.2.6 encodings.mbcs — Windows ANSIcodepage 176

7277 encodings.utf_8_sig— UTF-8 codec with BOM signature 176

8 Data Types 177
8.1 datetime — Basicdateand time types it e e e e e e e e e e e 177
8.1.1 Awareand Naive Objects i v v it et e e e e e 177

8.1.2 Constants e e e e 178

8.1.3 Available Types e 178

8.1.4 timedelta Objects o o i i i i i e e 179

8.1.5 date Objects i i e e e e 183

8.1.6 datetime ObJectS v v v v i i e e e e e e e e e e e 187

8.1.7 time Objects e e e 197

8.1.8 tzinfo Objects e 200

8.1.9 timezone Objects. o i e e 207
8.1.10 strftime () and strptime () Behavior 207

8.2 zoneinfo —ITANAtIMEZONE SUPPOTL . . . v v v v v v v e e e e e e e e e e e e e e e e 211
82.1 Using ZoneInfo v i v v i it i e e e e e e e 212

8.2.2 DataSOUICES . . . « v v v v i e 213

8.2.3 The ZoneInfoclass o o i i i e e e 214

824 Functions e e e 216

825 Globals e 216

8.2.6 Exceptions and warningso i .t e e e e e e e e e e e e e 216

8.3 calendar — General calendar-related functions L oL 217
84 collections — Containerdatatypes Lo e 221
8.4.1 ChainMapobjects o o i i e e 221

842 Counter ObJeCtS v i it e e e e e e e 224

843 deque objectS e e e e e e e e 226

844 defaultdictobjects. i e e e e e 230

8.4.5 namedtuple () Factory Function for Tuples with Named Fields 231

84.6 OrderedDict ObJeCtS. v v i v v i it e e e e e e 234

847 UserDictobjects o o i i i e e 236

84.8 UserList obJectS v i v v i i e e e e e e e e e e e e 236

8.4.9 UserStringobjectS v i i it e e e e e e e e e e 237

85 collections.abc — Abstract Base Classes for Containers 237
8.5.1 Collections Abstract Base Classes o it i e 237

8.6 heapg—Heapqueuealgorithm 241
8.6.1 BasicExamples e e e e 242

8.6.2 Priority Queue Implementation Notes e 243

8.6.3 Theory. o e e e e e 244

8.7 Dbisect — Array bisection algorithmo o000 245
8.7.1 Searching Sorted Lists e e 246

8.7.2 Other Examples e e e e 246

8.8 array — Efficient arrays of numeric valueso 247
89 weakref — Weakreferences e 250
8.9.1 Weak Reference Objects 253

892 Example 254

8.9.3 Finalizer Objects o e e e e 255

8.9.4 Comparing finalizers with __del__ () methods 256

8.10 types — Dynamic type creation and names for built-in types 257
8.10.1 Dynamic Type Creation i v v ittt e e e e e e 257
8.10.2 Standard Interpreter Types 258
8.10.3 Additional Utility Classes and Functions 261
8.10.4 Coroutine Utility Functions 262

8.11 copy — Shallow and deep copy operations« v v v v v vt e e e 262

8.12 pprint — Datapretty printer e e e e e e e e e e e e e e e 263
8.12.1 PrettyPrinter Objects L 265
8.12.2 Example 265

8.13 reprlib — Alternate repr () implementation 268
8.13.1 ReprObjects i i e e e e 269
8.13.2 Subclassing Repr Objects i e e e e 270

8.14 enum — Support for enumerations L Lo oL 270
8.14.1 Module Contents o v i i i e e e e e e e e e e e 270
8.14.2 CreatinganEnum 271
8.14.3 Programmatic access to enumeration members and their attributes 272
8.14.4 Duplicating enum members and values L. e 272
8.14.5 Ensuring unique enumeration valuesl e oo 273
8.14.6 Usingautomatic values L o 273
8.14.7 Tteration L. e e e e e e 274
8.14.8 CompariSONs v it e e e e e e e e e 274
8.14.9 Allowed members and attributes of enumerations 275
8.14.10 Restricted Enum subclassing L e 276
8.14.11 Pickling L e e 276
8.14.12 Functional APT e 277
8.14.13 Derived Enumerationso e e e 278
8.14.14 Whentouse __new__ () VS. __ Init () . v v v v v v v it e e e e e e 281
8.14.15 Interesting examples o v v it e e e e e e e e e e e e e e e 282
8.14.16 How are Enums different? oo 286

8.15 graphlib — Functionality to operate with graph-like structures 288
8.15.1 EXCEpHONS o o it e e e e e e e 290

Numeric and Mathematical Modules 291

9.1 numbers — Numeric abstract base classes oo 291
9.1.1 The numeriC tOWer i i v it e e e e e e 291
9.1.2 Notes for type implementors 292

9.2 math — Mathematical functions L e 294
9.2.1 Number-theoretic and representation functions 294
9.2.2 Power and logarithmic functions oL 0oL, 297
9.2.3 Trigonometric functions L. 298
9.24 Angular CONVEersion ittt e e e e e e e e 299
9.2.5 Hyperbolic functions e e e e e e 299
9.2.6 Special functions L e e e e e e 300
9277 Constants e e e e 300

9.3 cmath — Mathematical functions for complex numbers, 301
9.3.1 Conversions to and from polar coordinates, 301
9.3.2 Power and logarithmic functions L o 302
9.3.3 Trigonometric functions L L. e e e e e 302
9.3.4 Hyperbolic functions e 303
9.3.5 Classification functions L e e e 303
9.3.6 Constantso i e e e e e e e e e 304

94 decimal — Decimal fixed point and floating point arithmetic 304
9.4.1 Quick-start Tutorial e 306
9.42 Decimal Objects e e e e e e e e 309
943 Context ObJects e e e 315
944 ConStantso it e e e e e e e e e e e e e e 321
945 Roundingmodes. e 321

9.4.6 Signals 322

9.47 Floating POInt NOteS o o i i e e e e e e e e e e 323

9.4.8 Workingwiththreads e 325

9.4.9 ReCIPES e e 325
9.4.10 Decimal FAQ e 328

9.5 fractions —Rationalnumbers oL 331
9.6 random — Generate pseudo-random numbers e e 333
9.6.1 Bookkeeping functions e e 333

9.6.2 Functionsforbytes e 334

9.6.3 Functions for integers e e e e e e e e 334

9.6.4 Functions for SEqUENCEs o i e e 334

9.6.5 Real-valued distributions 336

9.6.6 Alternative GEneratort e e e e e e e 337

9.6.7 NotesonReproducibility 337

9.6.8 Examples L 337

9.6.9 ReCIPES e 339

9.7 statistics — Mathematical statistics functions oL 340
9.7.1 Averages and measures of central location, 340

9.7.2 Measuresof spread e e e e 341

9.73 Functiondetails e e e 341

974 EXCePLiONS vt i i e e e e e e e e e e e 346

9.7.5 NormalDist ObjectS o i i ittt e e 347

10 Functional Programming Modules 351
10.1 itertools — Functions creating iterators for efficient looping 351
10.1.1 Ttertool functions o L e e e 353

10.1.2 Ttertools Recipes o v i i e e e e e e e e e e e 361

10.2 functools — Higher-order functions and operations on callable objects 365
10.2.1 partial Objects e 373

10.3 operator — Standard operators as functions Lo 374
10.3.1 Mapping Operators to Functions 378

10.3.2 In-place Operators v v v v v v i e e e e e e e e e e e e e e e e e e e 379

11 File and Directory Access 381
11.1 pathlib — Object-oriented filesystem paths, 381
I1.1.1 BaSiCUSE . . . v v vt e e e e e e e e e e e e 382
I1.1.2 Purepaths o o e e e e e e e 383

11.1.3 Concretepaths e 390

11.1.4 Correspondence to toolsinthe osmodule 397

11.2 os.path — Common pathname manipulations 398
11.3 fileinput — Iterate over lines from multiple input streams 403
11.4 stat — Interpreting stat () results o e e e 405
11.5 filecmp — File and Directory Comparisons 410
11.5.1 Thedircmpeclass o o 0 i i i e e e e e e 410

11.6 tempfile — Generate temporary files and directories 412
11.6.1 Examples o oo e 415

11.6.2 Deprecated functions and variables e 415

11.7 glob — Unix style pathname pattern expansion v v v v v v v v v v v v v o 416
11.8 fnmatch — Unix filename pattern matching 417
119 linecache — Randomaccesstotextlines 418
11.10 shutil — High-level file operations e 419
11.10.1 Directory and files operations v v v it e e e e e 419
11.10.2 Archiving Operations v v v v v v et e e e e e e e e e e e e 424
11.10.3 Querying the size of the output terminal 427

12 Data Persistence 429
12.1 pickle — Python object serialization 429
12.1.1 Relationship to other Pythonmodules 429
12.1.2 Datastreamformat e e 430

12.1.3 Module Interface e e e e e 431

12.1.4 What can be pickled and unpickled?, 434
12.1.5 Pickling Class Instances o i v vt it i e e e 435
12.1.6 Custom Reduction for Types, Functions, and Other Objects 440
12.1.7 Out-of-band Buffers 441
12.1.8 Restricting Globals L 443
12.1.9 Performance e e e e e e 444
12.1.10 Examples o e e e e e e e e e e e e e 444

12.2 copyreg — Register pickle supportfunctions L. 444
1221 Example oo e 445

12.3 shelve — Python object persistence o o v i ittt 445
12.3.1 ReStriCtions v i i e e e e e e e e e 446

1232 Example o e e e e e e e e 447

12.4 marshal — Internal Python object serialization 448
12.5 dbm — Interfaces to Unix “databases” e 449
12.5.1 dbm.gnu — GNU’s reinterpretationof dbm, 450
12.5.2 dbm.ndbm — Interface basedonndbm oo 0oL 452

12.5.3 dbm.dumb — Portable DBM implementation 452

12.6 sglite3 — DB-API 2.0 interface for SQLite databases 453
12.6.1 Module functions and constantsl e e e e e 455
12.6.2 Connection Objects o ittt e e e e e 458
12.6.3 Cursor ObJeCts v v vt e e e e e 464
1264 ROWODJECIS . .« v v v o o e 467

12.6.5 EXCEPHONS . . . v v v v i e 468

12.6.6 SQLiteand Pythontypes e 468
12.6.7 Controlling Transactions« « v v v v vt b e e e e e e e e e 472
12.6.8 Using sglite3efficiently L 473

13 Data Compression and Archiving 475
13.1 zlib — Compression compatible withgzip, 475
13.2 gzip — Supportfor gzipfiles 478
13.2.1 Examplesof usage e e e 480
13.2.2 Command Line Interface 481

13.3 bz2 — Support for bzip2 compressiono oo 481
13.3.1 (De)compressionof files 482
13.3.2 Incremental (de)compression oL e e e e e 483

13.3.3 One-shot (de)compression« v v v v v vttt e e e e e e 484

1334 Examplesof usage o . i e e e e e e e e e 484

13.4 1zma — Compression using the LZMA algorithm 485
13.4.1 Reading and writing compressedfiles o000 485
13.4.2 Compressing and decompressing data inmemory 486
13.43 Miscellaneouso e 488
13.4.4 Specifying custom filter chains L e 489

13.4.5 Examples e e e e e e e 490

13.5 zipfile — WorkwithZIP archives 491
13.5.1 ZipFile Objects e e e e e 492
13.5.2 PathObjects o e e 495

13.5.3 PyZipFile Objects o o i i e e e e e e e e e e e e e 496
13.54 ZipInfo Objects o 0 e e e e e e e e e e e 497
13.5.5 Command-Line Interface 499
13.5.6 Decompression pitfalls oL 499

13.6 tarfile — Read and write tar archivefiles 500
13.6.1 TarFile Objects i e e 503

13.6.2 TarInfo Objects o v i e e e e e e e e e e e 506
13.6.3 Extractionfilters L e 508

13.6.4 Command-Line Interface L 511

13.6.5 Examples 512
13.6.6 Supported tar formatso e 513

vi

13.6.77 Unicodeissues« v v v v vt e e e e e e e e
14 File Formats
14.1 csv — CSVFile Readingand Writing
14.1.1 Module Contents ot v it e e e e e e e e e
14.1.2 Dialects and Formatting Parameters
14.1.3 Reader Objects i i e
14.1.4 Writer Objects o o o e i e e e e e e e e e e e
14.1.5 Examples o e e e e e
142 configparser — Configuration file parser oo
142.1 Quick Start e e e e e e e e
14.2.2 Supported Datatypes e e e e e e
14.2.3 Fallback Values e e
14.2.4 Supported INI File Structure
14.2.5 Interpolationof values e
14.2.6 Mapping Protocol ACCESS v v v v i e e e e e e e e e e
14.2.77 Customizing Parser Behaviour L o
1428 Legacy APITExamples e
1429 ConfigParser Objects e
14.2.10 RawConfigParser Objects it it
14.2.11 EXCEPLONS .+ v v v v v e
143 netrc—mnetrcfile processing o . e e e e e e e
143.1 mnetrc Objects e e e
144 plistlib — Generate and parse Apple .plistfiles
14.4.1 Examples o o e e e e
15 Cryptographic Services
15.1 hashlib — Secure hashes and message digests
15.1.1 Hashalgorithms e
15.1.2 SHAKE variable length digests i
15.1.3 Keyderivation v v v i e e e e e e e e e e e e e e e e e
15.1.4 BLAKE2 e
15.2 hmac — Keyed-Hashing for Message Authentication
15.3 secrets — Generate secure random numbers for managing secrets
153.1 Randomnumbers e
15.3.2 GeneratinZ toKeNS v v v v v e
15.3.3 Otherfunctions e e e
15.3.4 Recipesand best practices oL
16 Generic Operating System Services
16.1 os — Miscellaneous operating system interfaces
16.1.1 File Names, Command Line Arguments, and Environment Variables
16.1.2 Process Parameters
16.1.3 File Object Creation o v v v i v ittt e e e e e
16.1.4 File Descriptor Operations v v v v v v et e e e e e e e
16.1.5 Filesand Directories L e e
16.1.6 Process Management
16.1.7 Interface tothe scheduler
16.1.8 Miscellaneous System Information
16.1.9 Randomnumbers
16.2 io — Core tools for working with streams e
16.2.1 OVEIVIEW o i ittt s e e e e e e e
16.2.2 High-level Module Interface L
16.2.3 Classhierarchy e
16.2.4 Performance L. e e
16.3 time — Time access and CONVEISIONS« « v v v v v v v v bt e e e e e e e e e e
16.3.1 Functions i i e e e e

16.3.2 Clock ID Constants
16.3.3 Timezone Constants

515
515
515
519
519
520
520
521
522
523
524
524
525
526
527
532
533
537
537
538
538
539
540

543
543
543
545
545
546
553
554
555
555
556
556

557
557
558
558
564
564
573
593
604
605
606
607
608
609
609
619
619
620
627
628

vii

16.4

16.5
16.6

16.7

16.8

16.9
16.10

16.11

16.12
16.13

16.14

argparse — Parser for command-line options, arguments and sub-commands 629

16.4.1 Example e e e e e e e e e 629
16.4.2 ArgumentParser objects oLl e 630
16.4.3 The add_argument() method 638
1644 The parse_args() method 649
16.4.5 Otherutilities e e 652
16.4.6 Upgradingoptparse code i i i e e e e e e e e 659
getopt — C-style parser for command line options, 659
logging — Logging facility for Python o o o 662
16.6.1 Logger Objects e 662
16.6.2 LoggingLevels e 666
16.6.3 Handler Objects o v it e e e e e e e e e e e e e 666
16.6.4 Formatter ObJectS o v v v it e e e e e e e e e e e e e e 667
16.6.5 Filter Objects o o i i e e e e e e e e e 669
16.6.6 LogRecord Objects e 669
16.6.7 LogRecord attributes 670
16.6.8 LoggerAdapter Objects L e 672
16.6.9 Thread Safety e e e e 672
16.6.10 Module-Level Functions e 672
16.6.11 Module-Level Attributes 676
16.6.12 Integration with the warningsmodule 676
logging.config — Logging configuration, 677
16.7.1 Configuration functions o v it e e e e e e e e e 677
16.7.2 Security considerationso i e e e e e e e e e e 679
16.7.3 Configuration dictionary schema Lo oL 679
16.7.4 Configuration file formato oL oL 684
logging.handlers — Logginghandlers 687
16.8.1 StreamHandler 687
16.8.2 FileHandler e 688
1683 NullHandler e 688
16.8.4 WatchedFileHandler 688
16.8.5 BaseRotatingHandler 689
16.8.6 RotatingFileHandler 690
16.8.7 TimedRotatingFileHandler 691
16.8.8 SocketHandler e 692
16.8.9 DatagramHandler o 693
16.8.10 SysLogHandler e 693
16.8.11 NTEventLogHandler 695
16.8.12 SMTPHandler e e 696
16.8.13 MemoryHandler e e e 696
16.8.14 HTTPHandler et e 697
16.8.15 QueueHandler e e 698
16.8.16 QueueListener e e e e e e e e e e e e e 698
getpass — Portable password input L. e e e 699
curses — Terminal handling for character-cell displays 700
16.10.1 Functions e e e e e e e 700
16.10.2 Window Objects o L e 707
16.10.3 Constants o v v i e e e e e e e e e e e e e e e e e 712
curses.textpad — Text input widget for curses programs 717
16.11.1 TextboX ODJECES . . . v v v v o o et e e e e e e e e e e e e e e e e 717
curses.ascii — Utilities for ASCII characters 718
curses.panel — A panel stack extension forcurses oL oo 720
16.13.1 Functions o i i i it e e e e e e e e 720
16.13.2 Panel Objects e e e e e 721
platform — Access to underlying platform’s identifyingdata 721
16.14.1 CrossPlatform e 722
16.14.2 Java Platform e 723
16.14.3 Windows Platform 723

viii

16.14.4 macOS Platform e e e 724

16.14.5 Unix Platforms e 724
16.15 errno — Standard errno system symbols o oL Lo 724
16.16 ctypes — A foreign function library for Python 000 730
16.16.1 ctypestutorial 730
16.16.2 ctypesreferenceo e e e e 747
17 Concurrent Execution 761
17.1 threading — Thread-based parallelism 761
17.1.1 Thread-Local Data e 763
17.1.2 Thread Objects o v v v v e e e e e e e e e e e e e e e e e e 763
17.1.3 Lock Objects o v v i e e e e e e e e e e e 765
17.1.4 RLock Objects o e e e e 766
17.1.5 Condition ObJects« . v it e e e e e e e e e e e e 767
17.1.6 Semaphore Objects 769
17.1.7 Event ObJects o v v it e 770
17.1.8 Timer ObJects o v i i e et e e e e e e e e e e e e e e e e e 771
17.1.9 Barrier Objects e e e 771
17.1.10 Using locks, conditions, and semaphores in the with statement 773
17.2 multiprocessing — Process-based parallelism 773
17.2.1 Introduction L e e e e e 773
17.22 Reference e e 779
17.2.3 Programming guidelines L e 806
17.2.4 Examples e 809

17.3 multiprocessing.shared_memory — Provides shared memory for direct access across
PIOCESSES + v v v v v v e 814
17.4 The concurrent package i i i e e e e e e 818
17.5 concurrent.futures — Launching parallel tasks 819
17.5.1 Executor Objects i e 819
17.5.2 ThreadPoolExecutor o . o e e e e e e 820
17.5.3 ProcessPoolExecutor 821
1754 Future ObJectS v v v v i o e 823
17.5.5 Module Functions e 824
17.5.6 Exceptionclasses e 825
17.6 subprocess — Subprocess management oL 825
17.6.1 Usingthe subprocessModule L oo 825
17.6.2 Security Considerations v v v v i e e e e e e e e e e e e 833
17.6.3 Popen ObjJects v v i i e e e e e e e e e e e e e e e e 833
17.6.4 Windows Popen Helpers 835
17.6.5 Older high-level APT 838
17.6.6 Replacing Older Functions with the subprocessModule 839
17.6.7 Legacy Shell Invocation Functions 842
17.6.8 NOtES . . . o o vt e e e e e 843
177 sched —Eventscheduler e 843
17.7.1 Scheduler Objects e 844
17.8 queue — A synchronized queueclass oo 845
17.8.1 Queue Objects L e e 846
17.8.2 SimpleQueue ObJECts o v v i e e e e e e e e e e e e e 847
17.9 contextvars — Context Variables L o 848
17.9.1 Context Variables e 848
17.9.2 Manual Context Management 849
17.9.3 asyncio sUPPOIt o o it e e e e e e e 851
17.10 _thread — Low-level threading APT 851
18 Networking and Interprocess Communication 855
18.1 asyncio— AsynchronousI/O 855
18.1.1 Coroutinesand Tasks e 856
18.1.2 Streams e e e e 869

18.1.3 Synchronization Primitives L 875

18.1.4 Subprocesses o v v i i i e e e e e e e e e e e e e e e 879
18.1.5 Queues e e e 884
18.1.6 EXCeptions« i i e e e e e e e e 886
18.1.7 EventLoop e 887
18.1.8 Futures e 907
18.1.9 Transports and Protocols e e 910
18.1.10 Policies e e e e 923
18.1.11 Platform Support e 927
18.1.12 High-level APIIndex i ittt 928
18.1.13 Low-level APIIndex i 930
18.1.14 Developing with asyncio o v v i i et e e e e e e e 936
18.2 socket — Low-level networkinginterface 939
18.2.1 Socketfamilies L e 939
18.2.2 Module contents oL e e e e e e e e 942
18.2.3 SocketObjects e e 952
18.2.4 Notesonsocket timeoutst i it e e e e 959
1825 Example e e e e e e e e 959
18.3 ss1 — TLS/SSL wrapper for socketobjects 963
18.3.1 Functions, Constants, and Exceptions 963
18.3.2 SSLSockets o o e 975
18.3.3 SSLCONEXtS . . . v v v it e e e e e e e e e e e e e e 979
18.3.4 Certificates o i i i e e e e e e e e e 987
18.3.5 Examples e e e e e e e 989
18.3.6 Notes on non-blocking sockets oo 991
1837 Memory BIO Support 992
18.3.8 SSLSESSION i vt e e e e 994
18.3.9 Security considerationso i e e e e e e e e e e e 994
18.3.10 TLS 1.3 & & . o o o e e e 996
18.3.11 LibreSSLsupport o o e e e 996
18.4 select — Waitingfor /O completion 997
18.4.1 /dev/pollPollingObjects oo it 999
18.4.2 Edge and Level Trigger Polling (epoll) Objects 1000
18.4.3 Polling Objects v i v v e e e e e e e e e e e e e e e 1001
18.4.4 Kqueue ObJects o v i v v i e e e e e e e e e 1002
18.4.5 KeventObjects e 1002
18.5 selectors — High-level /O multiplexing 1004
18.5.1 Introduction e 1004
1852 Classes i i i i e 1004
1853 Examples e e e e e e e e 1006
18.6 signal — Set handlers for asynchronousevents 1007
18.6.1 Generalrules e e e e 1007
18.6.2 Modulecontents e e e e e 1008
18.6.3 Example e e e e e e e e e e e 1013
18.6.4 NoteonSIGPIPE e 1014
18.6.5 Note on Signal Handlers and Exceptions 1014
18.7 mmap — Memory-mapped file support oL Lo 1015
18.7.1 MADV_*ConstantS v v v v e e e e e e e e e e e e e e e e e 1019
19 Internet Data Handling 1021
19.1 email — Anemail and MIME handling package, 1021
19.1.1 email.message: Representing an email message 1022
19.1.2 email.parser: Parsingemail messageso i e e e 1030
19.1.3 email.generator: Generating MIME documents 1033
19.1.4 email.policy: Policy Objects i 1036
19.1.5 email.errors: Exceptionand Defectclasses 1042
19.1.6 email.headerregistry: Custom Header Objects 1044
19.1.7 email.contentmanager: Managing MIME Content 1049

20

19.1.8 email: Examples 1051
19.19 email.message.Message: Representing an email message using the compat 32 API1057

19.1.10 email.mime: Creating email and MIME objects from scratch 1065
19.1.11 email.header: Internationalized headers 1067
19.1.12 email.charset: Representing charactersets 1070
19.1.13 email.encoders: Encoders. 1072
19.1.14 email.utils: Miscellaneous utilities 1073
19.1.15 email.iterators:Iterators L e 1075
19.2 json —JSONencoder anddecoder 1076
1921 BasicUsage e 1078
19.2.2 Encodersand Decoders 1080
19.2.3 EXCePtions v v v v it e e e e e e e e e e e e e e e 1082
19.2.4 Standard Compliance and Interoperability 1083
19.2.5 Command Line Interface o 1084
19.3 mailbox — Manipulate mailboxes in various formats 1085
193.1 Mailboxobjects i e 1086
19.3.2 Messageobjects e 1093
1933 EXCEPLONS . . v v v v v o e 1101
1934 Examples e e e e e e e 1101
194 mimetypes — Map filenamesto MIME types 1102
19.4.1 MimeTypes Objects o ot i e e e e e 1104
19.5 base64 — Basel6, Base32, Base64, Base85 Data Encodings 1105
19.6 binhex — Encode and decode binhex4 files 1108
19.6.1 NOtes o o e e e e e 1108
19.7 binascii — Convert between binaryand ASCIT 1108
19.8 quopri — Encode and decode MIME quoted-printable data 1111
Structured Markup Processing Tools 1113
20.1 html — HyperText Markup Language support 1113
20.2 html.parser — Simple HTML and XHTML parser 1113
20.2.1 Example HTML Parser Application 1114
20.2.2 HTMLParser Methods ittt e 1114
20.2.3 Examples . . . oo . e e e e e e e e e e e e 1116
20.3 html.entities — Definitions of HTML general entities 1118
20.4 XML Processing Modules e 1118
20.4.1 XML vulnerabilities e 1119
2042 Thedefusedxml Package 1120
20.5 xml.etree.ElementTree — The ElementTree XML APT 1120
20.5.1 Tutorial e e e e 1120
20.5.2 XPathsupport 1125
20.53 Reference e 1126
20.5.4 XlInclude supporto L e e e e e e 1129
20.5.5 Reference e e e 1130
20.6 xml.dom — The Document Object Model APT 1138
20.6.1 Module CONteNts v v v v v i e e e e e e e e e e e e e e e 1139
20.6.2 Objectsinthe DOM e e 1140
20.6.3 Conformanceo it e e e e e 1147
20.7 xml.dom.minidom — Minimal DOM implementation 1148
20.7.1 DOMODJECts o o i e e e e e e e 1149
20.7.2 DOMExample e 1150
20.7.3 minidom and the DOM standard 1152
20.8 xml.dom.pulldom — Support for building partial DOM trees 1152
20.8.1 DOMEventStream Objectsot it 1154
20.9 xml.sax — Support for SAX2 parsers v v v v i e e e e e e e e e e e e e 1154
20.9.1 SAXException ObJects v v v i i e e e e e e e e e 1156
20.10 xml.sax.handler — Base classes for SAX handlers 1156
20.10.1 ContentHandler Objects i e 1158
20.10.2 DTDHandler Objects o i i it e e e e e e 1160

Xi

21

20.10.3 EntityResolver Objects o e e e 1160

20.10.4 ErrorHandler Objects i i i e e e e e e e 1160
20.11 xml.sax.saxutils — SAX Utilities e 1160
20.12 xml.sax.xmlreader — Interface for XML parsers 1161
20.12.1 XMLReader Objects i e e e e 1162
20.12.2 IncrementalParser Objects e e 1163
20.12.3 Locator ODJECS . . . v v v v o o e e e e e e e e e e e e e e e e e e e 1163
20.12.4 InputSource ObJECtS v v v i e e e e e e e e e e e e 1164
20.12.5 The AttributesInterface L 1164
20.12.6 The AttributesNSInterface 1165
20.13 xml .parsers.expat — Fast XML parsing using Expat 1165
20.13.1 XMLParser Objects o o i it e e e e e e e 1166
20.13.2 ExpatError EXceptions L e e e e e e e e e 1170
20.13.3 Example oL e e e e e e e 1171
20.13.4 Content Model Descriptions v v vt v i e e e e e e 1171
20.13.5 Expat error COnStants vt it e e e e e e e e e e e e e e e e 1172
Internet Protocols and Support 1175
21.1 webbrowser — Convenient Web-browser controller 1175
21.1.1 Browser Controller Objects it 1177
21.2 wsgiref — WSGI Utilities and Reference Implementation 1177
21.2.1 wsgiref.util - WSGI environment utilities 1177
21.2.2 wsgiref.headers - WSGIresponse headertools 1179
2123 wsgiref.simple_server —asimple WSGIHTTPserver 1180
21.24 wsgiref.validate — WSGI conformance checker 1181
21.2.5 wsgiref.handlers —server/gateway baseclasses 1182
21.2.6 Examples e e e e e e e e e e e e 1185
21.3 wurllib — URLhandlingmodules i 1186
21.4 urllib.request — Extensible library foropening URLs, 1187
21.4.1 RequestObjects e 1191
21.4.2 OpenerDirector Objects oottt 1193
21.4.3 BaseHandler Objects o i i i e e e e e e e e e e 1194
21.4.4 HTTPRedirectHandler Objects v i it et et e e e o 1195
21.4.5 HTTPCookieProcessor Objects i v it i 1195
21.4.6 ProxyHandler Objects 1196
21.4.7 HTTPPasswordMgr Objects oo i i ittt i 1196
21.4.8 HTTPPasswordMgrWithPriorAuth Objects, 1196
21.4.9 AbstractBasicAuthHandler Objects o 1196
21.4.10 HTTPBasicAuthHandler Objects o o vt it et e e e 1197
21.4.11 ProxyBasicAuthHandler Objects 1197
21.4.12 AbstractDigestAuthHandler Objects 1197
21.4.13 HTTPDigestAuthHandler Objects 1197
21.4.14 ProxyDigestAuthHandler Objects it 1197
21.4.15 HTTPHandler Objects i i i e e e e e e e e e e e e e e 1197
21.4.16 HTTPSHandler Objects ittt ie e 1197
21.4.17 FileHandler Objects 1197
21.4.18 DataHandler Objects o it 1198
21.4.19 FTPHandler Objects o o i e e e e e e e e e e e 1198
21.4.20 CacheFTPHandler Objects i i i i i et e e e e e et 1198
21.4.21 UnknownHandler Objects e 1198
21.4.22 HTTPErrorProcessor Objects v it 1198
21,423 Exampleso e e e e e e e e 1198
21.4.24 Legacyinterface e e 1201
21.4.25 urllib.request Restrictions e 1203
21.5 urllib.response — Responseclassesusedbyurllib 1204
21.6 urllib.parse — Parse URLsinto components 1204
21.6.1 URLParsing e e e 1204
21.6.2 URL parsing SECUrity o v v v vt ittt e e e e e e e 1209

Xii

21.6.3 Parsing ASCITEncoded Bytes 0 it i 1209

21.6.4 Structured Parse Results L 1209
21.6.5 URLQuUOtIng o ot e e e e 1210
21.7 urllib.error — Exception classes raised by urllib.request 1212
21.8 urllib.robotparser — Parser forrobots.txt 1213
219 http —HTTPmodules e e e e 1214
21.9.1 HTTPstatus codes o v v it ittt e et e e e e e e 1215
21.10 http.client — HTTP protocolclient 1216
21.10.1 HTTPConnection Objects v ittt e et e 1218
21.10.2 HTTPResponse Objects i it s e 1220
21.10.3 Examples e e e e e e e 1221
21.10.4 HTTPMessage ODJeCtS v v v v v v i e e e e e e e e e e e e e e e e e 1223
21.11 ftplib — FTP protocol client o i e 1223
21.11.1 FTP Objects o e e e e e e e e e e e e 1225
21.11.2 FTP_TLS ODbjects o v it i e e e e e e e e e e e e e e e e 1227
21.12 poplib — POP3 protocol client 1228
21.12.1 POP3 ODbJECtS . . . v v v oo e e e e e e e e e e e e e e e e 1229
21.12.2 POP3 Example o e e e e e e e e e e 1230
21.13 imaplib —IMAP4 protocol client oL 1231
21.13.1 IMAP4 ObJects o v vt e e e e e e e e e e e e e e 1232
21.13.2 IMAP4 Example e e e 1237
21.14 smtplib — SMTP protocolclient 1237
21.14.1 SMTP ODbjects o vt e e e e e e 1239
21.14.2 SMTP Example o o e e e e e e e e e e 1243
21.15 uuid — UUID objects accordingto RFC 4122 1243
21.15.1 Exampleo 1246
21.16 socketserver — A framework for network servers oL 1247
21.16.1 Server Creation NOES v v i vttt e e e e e e e 1247
21.16.2 Server ODJECtS v v v v o e 1249
21.16.3 Request Handler Objects e 1251
21.16.4 Examples e e 1251
21.17 http.server — HTTPservers i it i it 1255
21.17.1 Security Considerations o vttt e e e e e e e 1260
21.18 http.cookies — HTTP state management v v v v v v v v v v v v v 1260
21.18.1 Cookie ObJects v v v o o e e e e e e e e e e e e e e 1261
21.18.2 Morsel Objects o e e e e e e e e e 1262
21183 Example 1263
21.19 http.cookiejar — Cookie handling for HTTP clients 1264
21.19.1 CookielJar and FileCookieJar Objects o v i i it e et 1265
21.19.2 FileCookieJar subclasses and co-operation with web browsers 1267
21.19.3 CookiePolicy Objects o i i e e e 1267
21.19.4 DefaultCookiePolicy Objects 1268
21.19.5 Cookie Objects o v v i e e e e e 1270
21.19.6 Examples o e e e e e e e e e e e e 1271
21.20 xmlrpc — XMLRPC server and clientmodules 1272
21.21 xmlrpc.client — XML-RPCclientaccess oo v i i i i v oo 1272
21.21.1 ServerProxy Objects o o e e e e e e 1274
21.21.2 DateTime Objects o v i i e e e e e e e 1275
21.21.3 Binary ObJects v vt e e e e e e e e 1275
21.21.4 Fault Objects o v v e e e e e e e e e e e e e e e e e 1276
21.21.5 ProtocolError Objects o o v v i e e e e e e e e e e 1277
21.21.6 MultiCall Objects o o e e e e e e e e e 1277
21.21.7 Convenience Functions e e e 1278
21.21.8 Example of Client Usage i ittt it 1278
21.21.9 Example of Client and Server Usage v i v ... 1279
21.22 xmlrpc.server — Basic XML-RPCservers. 1279
21.22.1 SimpleXMLRPCServer Objects e 1280
21.22.2 CGIXMLRPCRequestHandler 1283

22

23

24

25

21.22.3 Documenting XMLRPC server 0 1284

21.22.4 DocXMLRPCServer Objects v v v v i e e e e e e e e e e e e e e e 1284
21.22.5 DocCGIXMLRPCRequestHandler 1285
21.23 ipaddress — IPv4/IPv6 manipulation library o oL 1285
21.23.1 Convenience factory functions o 1285
21232 TP AAresses v v vt e e e e e e e e e 1286
21.23.3 TP Network definitions o o o e e e 1290
21.23.4 Interface ObJECtS o o . e e e e e e e e e e e e e 1296
21.23.5 Other Module Level Functions 1297
21.23.6 Custom Exceptions L 1298
Multimedia Services 1299
22.1 wave — Read and write WAV files Lo 1299
22.1.1 Wave_read Objects e e e e e 1299
22.1.2 Wave write ObJects o i e e e e e 1300
22.2 colorsys — Conversions between color systemso 1301
Internationalization 1303
23.1 gettext — Multilingual internationalization services 1303
23.1.1 GNUgettext API e e e 1303
23.1.2 Class-based API e 1305
23.1.3 Internationalizing your programs and modules oL 1309
23.1.4 Acknowledgements L.l 1311
23.2 locale — Internationalization SEIVICES v v v v v et e e e e e e 1312
23.2.1 Background, details, hints, tipsand caveats 1317
23.2.2 For extension writers and programs that embed Python 1318
2323 Accesstomessage catalogs o 1318
Program Frameworks 1319
24.1 turtle — Turtle graphics o o i e e e e e e 1319
24.1.1 Introduction L e e e 1319
24.1.2 Overview of available Turtle and Screen methods 1321
24.1.3 Methods of RawTurtle/Turtle and corresponding functions 1323
24.1.4 Methods of TurtleScreen/Screen and corresponding functions 1339
24.1.5 Publicclasses e e e e e 1345
24.1.6 Helpand configuration e 1347
2417 turtledemo —Demoscripts e 1349
24.1.8 Changessince Python 2.6 1350
24.1.9 Changessince Python3.0 1351
24.2 cmd — Support for line-oriented command interpreterso 1351
2421 CmdObjects e e e 1351
2422 CmdExample L e 1353
243 shlex — Simple lexical analysis 1356
24.3.1 shlex Objects o i i i e e e e 1357
2432 ParsingRules e e e e e e 1359
24.3.3 Improved Compatibility with Shells 1360
Graphical User Interfaces with Tk 1361
25.1 tkinter — Pythoninterfaceto Tcl/Tk. o 1361
25.1.1 Tkinter Modules L. 1362
25.1.2 Tkinter Life Preserver 1363
25.1.3 A (Very)Quick Lookat Tcl/Tk e 1364
25.1.4 Mapping Basic Tk into Tkinter 1365
25.1.5 How Tk and Tkinter are Related, 1366
25.1.6 Handy Reference e e 1366
25.1.77 FileHandlers e 1371
25.2 tkinter.colorchooser — Color choosingdialog 1372
253 tkinter.font — Tkinter font wrappero 1372
254 Tkinter Dialogs e e e e 1373

Xiv

25.4.1 tkinter.simpledialog — Standard Tkinter input dialogs 1373

2542 tkinter.filedialog — Fileselectiondialogs 1374
2543 tkinter.commondialog — Dialog window templates 1376
25.5 tkinter.messagebox — Tkinter message prompts 1376
25.6 tkinter.scrolledtext — Scrolled Text Widget 1377
257 tkinter.dnd — Draganddropsupport o 1377
25.8 tkinter.ttk — Tkthemedwidgets i 1378
25.8.1 Using Ttk 0 e e e 1378
25.82 Tk WIdgets o o e e e e e e e e e 1379
2583 Widget. o e e e e 1379
25.8.4 CombobOX v . e e e 1381
25.8.5 Spinbox 1382
25.8.6 Notebook 1383
25.8.7 Progressbar L e e e 1386
25.8.8 Separator e e 1386
25.8.9 Sizegrip e e e 1387
25.8.10 Treeview o o o e e e e e e e e e e 1387
25.8.11 Ttk Styling o o e e e e 1392
259 tkinter.tix — Extensionwidgetsfor Tk 1396
25.9.1 Using Tix 0t 1396
2592 TIXWIAZEs e e e e e e 1397
2593 TixCommandso it e e e e e 1399
2510 IDLE o 1400
25.10.1 Menus oL e e e e e e e 1401
25.10.2 Editingand navigation e e e 1404
25.10.3 Startup and code XeCUtION oL .o e e e e e e e e e e e e e e e 1407
25.10.4 Help and preferences L e 1410
26 Development Tools 1413
26.1 typing—Supportfortypehints Lo 1413
26.1.1 RelevantPEPs e 1413
26.1.2 Typealiases v v v e e e e e e e e e e e e e e e 1414
26.1.3 NewType o o i e e e e e e e e e e 1414
26.1.4 Callable e e 1415
26.1.5 GENETICS . « . v v v v e e e e e e e e e e e e e e e e 1416
26.1.6 User-defined generic types e 1416
26.1.7 The ANy tYPe . . . v v o i e 1418
26.1.8 Nominal vs structural subtyping e 1419
26.1.9 Module contents L. e e e e e e e 1420
26.2 pydoc — Documentation generator and online helpsystem 1439
26.3 Python Development Mode L 1440
26.4 Effects of the Python Development Mode 1441
26.5 ResourceWarning Example L. e e e e 1442
26.6 Bad file descriptor error example L L. oL e e e e e e e e e e e e 1443
26.7 doctest — Testinteractive Pythonexamples 1443
26.7.1 Simple Usage: Checking Examples in Docstrings 1445
26.7.2 Simple Usage: Checking Examplesina TextFile 1446
26.7.3 HowltWorks 1447
26.7.4 Basic APL e 1454
26.7.5 Unittest API 0o e 1455
26.7.6 Advanced APL 1457
26.777 Debugging e e 1462
26.7.8 S0apbOX e e e e e e e e e e e e 1464
26.8 unittest — Unittesting framework e 1465
26.8.1 Basicexample e e 1466
26.8.2 Command-Line Interface L oo 1467
26.8.3 TestDiscovery o o oL e e e e 1468
26.8.4 Organizingtestcodeo e e e 1469

27

26.8.5 Re-usingoldtestcode 1471

26.8.6 Skipping tests and expected failures L. L o oo 1471
26.8.7 Distinguishing test iterations using subtests oo oo 1473
26.8.8 Classesand functions o L i e e e e 1474
26.8.9 Class and Module Fixtures 1492
26.8.10 Signal Handling 1493
269 unittest.mock —mockobjectlibrary e 1494
269.1 Quick Guide e e e 1494
26.9.2 TheMock Class o o i i e e e e e e e 1496
2693 Thepatchers L 1512
26.9.4 MagicMock and magic method supporto 1520
26.9.5 Helpers e e e 1524
26.10 unittest.mock —gettingstarted L e e 1532
26.10.1 UsingMock o e e e e 1532
26.10.2 Patch Decorators i i i e e e e e e e e 1537
26.10.3 Further Examples 1539
26.11 2to3 - Automated Python 2 to 3 code translation L. 1551
26.11.1 Using 2t03 o o o e e e e e e e e e e e e e e e 1551
20.11.2 FIXers o o v o i e e e e e e e e 1553
26.11.3 1ib2to3-2to3’slibrary 1556
26.12 test — Regression tests package for Pythono 0oL 1556
26.12.1 Writing Unit Tests for the test package 1557
26.12.2 Running tests using the command-line interface 1558
26.13 test.support — Utilities for the Python testsuite 1559
26.14 test.support.socket_helper — Utilities for sockettests 1571
26.15 test.support.script_helper — Utilities for the Python execution tests 1572

26.16 test.support .bytecode_helper — Support tools for testing correct bytecode generation 1573

Debugging and Profiling 1575
27.1 Auditeventstable L L e e e e e e 1575
27.2 bdb — Debugger framework L 1579
27.3 faulthandler — Dump the Python traceback 1583
27.3.1 Dumping the traceback e e e 1583
2732 Faulthandlerstate L e 1583
27.3.3 Dumping the tracebacks afteratimeout. L. 1584
27.3.4 Dumping the traceback onausersignal oL 1584
27.3.5 [Issue with file descriptors 1584
27.3.6 Example e e e e e e e e e e e 1585
274 pdb — The Python Debugger e 1585
27.4.1 Debugger Commands e 1587
27.5 The Python Profilers e 1591
27.5.1 Introduction to the profilers 1591
27.5.2 InstantUsersManual 1591
2753 profileand cProfile Module Reference 1593
2754 The Stats Class e e 1595
27.5.5 What Is Deterministic Profiling? 1597
27.5.6 Limitations o o i i i e e e e e e e e e 1597
27.5.77 Calibration 1598
27.5.8 Usingacustom tiMEr v v v v v v i e e e e e e e e e e e e e e e e e 1598
27.6 timeit — Measure execution time of small code snippets 1599
27.6.1 BasicExamples e 1599
27.6.2 PythonlInterface 1600
27.6.3 Command-Line Interface 1601
27.6.4 Examples e e e e e e e e e e e 1602
277 trace — Trace or track Python statement execution 1604
27.7.1 Command-Line Usage 1604
27.7.2 Programmatic Interface 1605
27.8 tracemalloc — Trace memory allocations 1606

27.8.1 Examples e e e e e e e e e e e e e e 1607
27.82 APL . . e 1611
28 Software Packaging and Distribution 1617
28.1 distutils — Building and installing Python modules 1617
28.2 ensurepip — Bootstrapping the pipinstaller 1618
28.2.1 Command lineinterface L 1618
2822 Module API e 1619
28.3 venv — Creation of virtual environments e 1619
28.3.1 Creating virtual environmentso it e e 1620
28.3.2 APL . . 1622
28.3.3 Anexample of extending EnvBuilder o 1624
28.4 zipapp — Manage executable Python zip archives 1628
28.4.1 BasicExample. Lo e 1628
28.4.2 Command-Line Interface L 1628
28.4.3 Python APL 1629
28.4.4 Examples e e e e e e e e e e e 1630
28.4.5 Specifying the Interpreter L e 1630
28.4.6 Creating Standalone Applications with zipapp 1631
28.4.7 The Python Zip Application Archive Format 1633
29 Python Runtime Services 1635
29.1 sys — System-specific parameters and functionso oL Lo 1635
29.2 sysconfig — Provide access to Python’s configuration information 1654
29.2.1 Configuration variables L e e e e 1654
29.2.2 Installation paths oL e e e e e e e e e 1654
29.23 Other functions e e e e 1656
29.2.4 Using sysconfigasascript o e 1657
293 builtins —Built-inobjects e 1657
294 _ main__ — Top-level scriptenvironmentol 1658
29.5 warnings — Warning control oL e e e e e e e 1658
29.5.1 Warning Categories o oo i e e e e e e e e e e 1659
29.5.2 The Warnings Filter 1659
29.5.3 Temporarily Suppressing Warnings 1661
29.5.4 Testing Warnings o v v vt e e e e e e e e e e e e e 1662
29.5.5 Updating Code For New Versions of Dependencies 1662
29.5.6 Available Functions L e 1663
29.5.7 Available Context Managers e 1664
29.6 dataclasses —DataClasses. o e e e e 1664
29.6.1 Module-level decorators, classes, and functions e 1665
29.6.2 POSt-INIt PrOCESSING .+ & v v v v v e o e e e e e e e e e e e e e e e e e e 1669
29.6.3 Classvariables e e e 1670
29.6.4 Init-only variables e 1670
29.6.5 FrozeninStancCes v v v i it e e e e e e e e e e e e e e e e e 1670
29.6.6 Inheritance L. e e e 1671
29.6.7 Default factory functions e e e e 1671
29.6.8 Mutable default values L 1671
20.6.9 EXCEPLONS . . . v v v v i i e e e e e e e e e e e e e e e 1672
29.7 contextlib — Utilities for with-statement contexts 1672
20.7.1 UtHEES . . . o o ot e e e e e e e e e e e 1672
29.7.2 Examplesand Recipes 1679
29.7.3 Single use, reusable and reentrant context managers e e e . 1682
29.8 abc — Abstract Base Classes e 1684
299 atexit —Exithandlers e 1688
299.1 atexit Example. oL 1689
29.10 traceback — Print or retrieve a stack traceback o oL 1690
29.10.1 TracebackExceptionObjects. o v v v i v v i i e it e 1692
29.10.2 StackSummary Objects i i e e e e e e e 1693

XVii

30

31

32

29.10.3 FrameSummary ObJectS v i v v i e e e e e e e e e e e e e
29.10.4 Traceback Examples e e e e
29.11 __future__ — Future statement definitions 0.
29.12 gc — Garbage Collector interface L e
29.13 inspect —Inspectliveobjects oL
29.13.1 Typesand members oo e e e e e e
29.13.2 Retrieving source COde v o i e e e e e e e e e e e e e e e e
29.13.3 Introspecting callables with the Signature object
29.13.4 Classes and functions i i i it e e e e e e
29.13.5 The interpreter stack oL
29.13.6 Fetching attributes statically oL
29.13.7 Current State of Generators and Coroutines oot
29.13.8 Code Objects Bit Flags o e
29.13.9 Command Line Interface
29.14 site — Site-specific configurationhooko oL 0oL
29.14.1 Readline configuration L.
29.14.2 Module contents L . e e e e e e e e e e e e e e e
29.14.3 Command Line Interface

Custom Python Interpreters

30.1 code — Interpreter base classes o e e e e e e e e e e e
30.1.1 Interactive Interpreter ObjectS o v v i i e e e e
30.1.2 Interactive Console Objects e

30.2 codeop — Compile Pythoncode L

Importing Modules
31.1 zipimport — Import modules from Zip archives L.
31.1.1 zipimporter Objects o e e e e e e e
31.1.2 Examples e e e e
31.2 pkgutil — Package extensionutility
31.3 modulefinder — Find modulesused by ascript
31.3.1 Example usage of ModuleFinder
31.4 runpy — Locating and executing Pythonmodules oL
31.5 importlib — The implementation of import L
31.5.1 Introduction L e e e e
31.52 Functions i e e e e e e e
31.5.3 importlib.abc - Abstract base classes related toimport.
3154 importlib.resources—-Resources.
3155 importlib.machinery - Importers and pathhooks
31.5.6 importlib.util - Utility code for importers
31.5.7 Examples e e e e e e e e e e e
31.6 Using importlib.metadata i ittt e e
31.6.1 OVerview e e e e e e
31.6.2 Functional API e
31.6.3 Distributionso e e e e e
31.6.4 Extending the search algorithm

Python Language Services

32.1 parser — Access Pythonparsetrees Lo e
32.1.1 Creating ST ObJects v v v i o e e e e e e e e e e e e e e e e
32.1.2 Converting ST Objects o o v i i e e e e e e e e e e
32.1.3 Querieson STObjects o e
32.1.4 Exceptions and Error Handling
32.1.5 STODJeCtS . . . v v v v e e e e
32.1.6 Example: Emulation of compile () o v v i ittt e e e e

32.2 ast — Abstract Syntax Trees o i i e e e e e e e e
32.2.1 Abstract Grammar L. e e e e e e e e e e
3222 NodecClasses v v v v v i e e e e e e e e e e e e e
3223 ast Helpers. oL e e e

xviii

3224 Compiler Flags o o . e e e e e e 1787

32.2.5 Command-Line Usage 0 i it ittt e 1787
32.3 symtable — Access to the compiler's symbol tables 1788
32.3.1 Generating Symbol Tables L 1788
32.3.2 Examining Symbol Tables 1788
324 symbol — Constants used with Python parse trees 1790
32.5 token — Constants used with Python parsetrees 1790
32.6 keyword — Testing for Python keywords 1793
3277 tokenize — Tokenizer for Pythonsource o oL 1794
32.77.1 TokenizingInput oL 1794
32.7.2 Command-Line Usage 1795
3273 Examples L e e e e e e e e e e e e e 1796
32.8 tabnanny — Detection of ambiguous indentationo 1798
32.9 pyclbr — Python module browser support Lo 1798
32.9.1 Function Objects e 1799
329.2 ClassObjects vt e e e e e e e 1799
32.10 py_compile — Compile Python sourcefiles, 1800
32.11 compileall — Byte-compile Python libraries 1801
32.11.1 Command-line use e e e e 1801
32.11.2 Public functions e 1803
32.12 dis — Disassembler for Python bytecode oL 1805
32.12.1 Bytecode analysiS e e e e e 1805
32.12.2 Analysis functions L e e e e e e e e e e e 1806
32.12.3 Python Bytecode Instructions e e e 1808
32.12.4 Opcode collections L e e e 1817
32.13 pickletools — Tools for pickle developers 1817
32.13.1 Command N USAZE o v v vt i e e e e e e e e 1818
32.13.2 Programmatic Interface e 1818

33 Miscellaneous Services 1819
33.1 formatter — Generic output formatting oo oo L 1819
33.1.1 The Formatter Interface 1819
33.1.2 Formatter Implementations e e e 1821
33.1.3 The Writer Interface e 1821
33.1.4 Writer Implementations oL 1822

34 MS Windows Specific Services 1823
34.1 msvcrt — Useful routines from the MS VC++runtime 1823
34.1.1 FileOperations e 1823
3412 Console /O e e 1824
34.1.3 Other Functions e e e 1824
342 winreg — Windows registry aCCesS v v v v v v e i e e e e e e e e e e e e e e e 1824
3421 Functions e e e e 1825
3422 ConstantS o e e e e e e e e e e e e e e e e 1830
3423 Registry Handle Objects e 1832
34.3 winsound — Sound-playing interface for Windows 1833

35 Unix Specific Services 1835
35.1 posix — The most common POSIX systemcalls 1835
35.1.1 Large File Support e e e e e e e e e 1835
35.1.2 Notable Module Contents ittt 1836
35.2 pwd — The password database L 1836
353 grp—Thegroupdatabase e 1837
354 termios —POSIXstylettycontrol 1837
354.1 Example e e e e e e e e e e e e 1838
35.5 tty — Terminal control functions e 1839
35.6 pty — Pseudo-terminal utilities e 1839
35.6.1 Example e 1840
3577 fcntl —The fentland ioctlsystemcalls.o oL o oo 1840

Xix

36

35.8 resource — Resource usage informationo 1843

35.8.1 Resource Limits e e e 1843
3582 Resource Usage o v v i i e e e e e e e e e e 1845
35.9 syslog— Unixsysloglibraryroutines 1847
359.1 Examples e e e e e e e 1848
Superseded Modules 1849
36.1 aifc —Read and write AIFFand AIFCfiles 1849
36.2 asynchat — Asynchronous socket command/response handler 1851
36.2.1 asynchat Example 1853
36.3 asyncore — Asynchronous sockethandler 1854
36.3.1 asyncore Example basic HTTP client 1856
36.3.2 asyncore Example basic echoserver. oL 1857
364 audioop — Manipulate rawaudiodata L. Lo 1858
36.5 cgi — Common Gateway Interface support 1861
36.5.1 Introduction L e e e e 1861
36.5.2 Usingthecgimodule e e 1861
36.5.3 Higher Level Interface e 1863
36.5.4 FunctionS i i i i e e e e e e e e e e e 1864
36.5.5 Caring about SECUrity v v it e e e e e e e e e 1865
36.5.6 Installing your CGI scriptona Unixsystemo v v v v v v v 1865
36.5.7 Testingyour CGIsCript o o o v i e e e e e e e e e e 1865
36.5.8 Debugging CGIScripts o o i e e 1866
36.5.9 Common problems and solutions Lo oL 1867
36.6 cgitb — Traceback manager for CGlscripts. L. 1867
36.7 chunk —Read IFFchunkeddata 1868
36.8 crypt — Function to check Unix passwords vt 1869
36.8.1 HashingMethods e e 1869
36.8.2 Module Attributes L. Lo e 1870
36.8.3 Module Functions L e e e e e 1870
36.8.4 Examples e e e 1871
36.9 imghdr — Determine the typeof animage e 1871
36.10 imp — Access the importinternals e e e 1872
36.10.1 Examples o e e e e e e e 1876
36.11 mailcap — Mailcapfilehandling L oo 1877
36.12 msilib — Read and write Microsoft Installer files, 1878
36.12.1 Database ObJECtS v v v v e e e e e e e e e e e e e e e e e 1879
36.12.2 View ODbJeCts v v v it e e e e e e e e e e e 1879
36.12.3 Summary Information Objects L 1880
36.12.4 Record Objects e e 1880
36.12.5 EITOTS . . . o o o e e e e e e e e e e 1881
36.12.6 CABODJECts o i it e e e e e 1881
36.12.7 Directory ObJectS v v v v v e e e e e e e e e e e e e e e e e e e 1881
36.12.8 Features o e e e 1882
36.12.9 GUIcClasses o oot e e e e 1882
36.12.10Precomputed tables oL 1883
36.13 nis — Interface to Sun’s NIS (Yellow Pages), 1883
36.14 nntplib — NNTP protocolclient o o i it e i et e e 1884
36.14.1 NNTP Objects o o o vt e e e e e e e e e e e e e e e 1886
36.14.2 Utility functions o e e e e 1890
36.15 optparse — Parser for command lineoptionso 1890
36.15.1 Background 1891
36.15.2 Tutorial L. e e e e 1893
36.15.3 Reference Guide e 1900
36.15.4 Option Callbacks e 1909
36.15.5 Extending optparse it e e e e e e e e e e e e 1912
36.16 ossaudiodev — Access to OSS-compatible audiodevices 1915
36.16.1 Audio Device Objects o e e e 1916

XX

37

36.16.2 Mixer Device Objects v v v i i e e e e e e e e e e e e e 1918

36.17 pipes — Interface to shell pipelines e 1919
36.17.1 Template Objects o v i i e e e e e e e e 1920
36.18 smtpd — SMTP Server o o e e e e e e 1920
36.18.1 SMTPServer Objects oo v ittt e e e e 1921
36.18.2 DebuggingServer Objects 1922
36.18.3 PureProxy Objects i i e e e e e e e e e e 1922
36.18.4 MailmanProxy Objects i i e e e e e e e 1922
36.18.5 SMTPChannel Objects i i 1922
36.19 sndhdr — Determine type of sound file o Lo 1923
36.20 spwd — The shadow password database 1924
36.21 sunau — Read and write Sun AUfiles 1925
36.21.1 AU_read ODbJects o v v v v e i e e e e e e e e e e e e e e e 1926
36.21.2 AU_write ObJeCts o o vttt e e e e e e e e e e e 1927
36.22 telnetlib — Telnetclient e 1927
36.22.1 Telnet Objects L L e 1928
36.22.2 Telnet Example o e e e e e e e e 1930
36.23 uu — Encode and decode uuencode files oL oL 1930
36.24 xdrlib — Encode and decode XDR data 1931
36.24.1 Packer Objects e 1931
36.24.2 Unpacker Objects o o ittt e e e e e e 1932
36.24.3 EBXCEPLONS . .« . v v e e e e e e e e e e e e e 1933
Security Considerations 1935
Glossary 1937
About these documents 1949
B.1 Contributors to the Python Documentation 1949
History and License 1951
C.1 Historyof the software e e e e e e e e e e 1951
C.2 Terms and conditions for accessing or otherwise using Python 1952
C.2.1 PSFLICENSE AGREEMENT FOR PYTHON 39.20. 1952
C.2.2 BEOPEN.COM LICENSE AGREEMENT FOR PYTHON2.0 1953
C.2.3 CNRILICENSE AGREEMENT FORPYTHON 1.6.1 1954
C.24 CWILICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2 1955
C.2.5 ZERO-CLAUSE BSD LICENSE FOR CODE IN THE PYTHON 3.9.20 DOCUMEN-
TATION e 1955
C.3 Licenses and Acknowledgements for Incorporated Software 1955
C.3.1 Mersenne TWISIET o o L o v i it e e e e e e e e e e e e e 1955
C.3.2 Sockets e e e 1956
C.3.3 Asynchronous SOCKet ServiCes v v v v v v i e e e e e e e e e 1957
C.3.4 Cookie management v v v v v v e e e e e e e e e e e e e e e e e e 1957
C3.5 Executiontracing e e e 1958
C.3.6 UUencode and UUdecode functions 1958
C3.7 XML Remote Procedure Calls 1959
C.3.8 test_epoll L e e e e e e e e 1959
C.3.9 Selectkqueue e e e e e e e e 1960
C3.10 SipHash24 e e 1960
C3.11 strtodanddtoa. L. e 1961
C3.12 OpenSSL . . . o o e e 1961
C3I3 expat. oot 1963
C3.04 Hbfli e e e 1964
C3.05 zlib . . o e e e 1964
C3.16 cfuhash 1965
C3.17 Hbmpdec e e e 1965
C3.18 WI3CCIANTeSt SUITe . . . v v v v e e e e e e e e e e e e e e e e e 1966

XXi

D Copyright
Bibliography
Python Module Index

Index

1967

1969

1971

1975

XXii

The Python Library Reference, Release 3.9.20

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages,
so it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the
optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.9.20

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

o An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

« If not separately noted, all functions that claim “Availability: Unix” are supported on macOS, which builds on
a Unix core.

The Python Library Reference, Release 3.9.20

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions
abs () delattr() hash () memoryview () set ()
all() dict () help() min () setattr ()
any () dir() hex () next () slice()
ascii () divmod () id() object () sorted()
bin() enumerate () input () oct () staticmethod ()
bool () eval () int () open () str()
breakpoint () exec () isinstance() ord() sum/()
bytearray () filter() issubclass () pow () super ()
bytes () float () iter() print () tuple ()
callable () format () len () property () type ()
chr () frozenset () 1list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed () __import__ ()
complex () hasattr () max () round ()

abs (x)
Return the absolute value of a number. The argument may be an integer, a floating point number, or an object
implementing __abs__ (). If the argument is a complex number, its magnitude is returned.

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iferable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.9.20

bin (x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is
not a Python int object, it has to define an __index__ () method that returns an integer. Some examples:

>>> bin(3)
'Ob11"

>>> bin (-10)
'-0b1010"

If prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b')
('Ob1110', '1110")

>>> f'{14:4b}', £'{14:b}"'

('0Ob1110', '"1110")

See also format () for more information.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard rruth testing procedure.
If x is false or omitted, this returns False; otherwise it returns True. The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)
This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.
set_trace () expecting no arguments. In this case, it is purely a convenience function so you don’t have to
explicitly import pdb or type as much code to enter the debugger. However, sys.breakpointhook ()
can be set to some other function and breakpoint () will automatically call that, allowing you to drop into
the debugger of choice.

Raises an auditing event builtins.breakpoint with argument breakpointhook.
New in version 3.7.

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

o If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« Ifitis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

o If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, err()rs]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray - it has the same non-mutating methods and the same in-
dexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

callable (object)
Return True if the object argument appears callable, F'a 1 se if not. If this returns True, it is still possible
that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); instances are callable if their classhasa__ _call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ '. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2):

The @Rclassmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod () in
this section. For more information on class methods, see types.

Changed in version 3.9: Class methods can now wrap other descriptors such as property ().

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the ast module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn't read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single"' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which compiler options should be activated and which
future features should be allowed. If neither is present (or both are zero) the code is compiled with the same
flags that affect the code that is calling compile (). If the flags argument is given and dont_inherit is not
(or is zero) then the compiler options and the future statements specified by the flags argument are used in
addition to those that would be used anyway. If dont_inherit is a non-zero integer then the flags argument is it
— the flags (future features and compiler options) in the surrounding code are ignored.

Compiler options and future statements are specified by bits which can be bitwise ORed together to specify
multiple options. The bitfield required to specify a given future feature can be found as the compiler_flag
attribute on the _Feature instance in the _ future__ module. Compiler flags can be found in ast
module, with PyCF__ prefix.

The Python Library Reference, Release 3.9.20

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are O (no optimization; __debug__
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed t0o).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source con-
tains null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

Raises an auditing event compile with arguments source and £ilename. This event may also be raised
by implicit compilation.

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be termi-
nated by at least one newline character. This is to facilitate detection of incomplete and complete statements
in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when
compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

New in version 3.8: ast .PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable support
for top-level await, async for,and async with.

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and f1oat. If both arguments are omitted, returns 0.

For a general Python object x, complex (x) delegates to x.___complex__ (). If __complex__ ()
is not defined then it falls back to __ float__ (). If _ float__ () is not defined then it falls back to
__index__ ().

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex ('1+273 ") isfine, but complex ('1 + 23j'") raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls back to __index_ () if _ complex_ () and _ float__ () are not
defined.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, 'foobar') isequivalenttodel x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 11 st, set, and tuple classes, as well as the collect ions module.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or _ _getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

« Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins_ ', '_ _name__ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all__ ', '_ builtins__ ', '__cached__', '__doc__', '_ _file_ ',
' initializing__', '__loader__ ', '__name__', '_ package_ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_ from']
>>> class Shape:

def _ dir_ (self):

C return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir(s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of names,
and its detailed behavior may change across releases. For example, metaclass attributes are not in the result
list when the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(g, a % b),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycase g * b

+ a % bisveryclosetoa,if a $ Db isnon-zero it has the same sign as b, and 0 <= abs(a % b) <
abs (b).

enumerate (iterable, start=0)
Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list (enumerate (seasons))
[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]

(continues on next page)

The Python Library Reference, Release 3.9.20

(continued from previous page)

>>> list (enumerate (seasons, start=1))
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression[, globals[, locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and
does not contain a value for the key _ _builtins__, a reference to the dictionary of the built-in module
builtinsisinserted under that key before expression is parsed. This means that expression normally has full
access to the standard bui 1t ins module and restricted environments are propagated. If the locals dictionary
is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed with
the globals and locals in the environment where eval () is called. Note, eval() does not have access to the
nested scopes (non-locals) in the enclosing environment.

The return value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with 'exec' as the
mode argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () or exec ().

See ast.literal_ eval () for afunction that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object. If
it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax error
occurs).! If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to be
valid as file input (see the section file-input in the Reference Manual). Be aware that the nonlocal, yield,
and return statements may not be used outside of function definitions even within the context of code passed
to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and
the local variables. If globals and locals are given, they are used for the global and local variables, respectively.
If provided, locals can be any mapping object. Remember that at module level, globals and locals are the
same dictionary. If exec gets two separate objects as globals and locals, the code will be executed as if it were
embedded in a class definition.

I Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto exec ().

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Note: The built-in functions gZlobals () and I1ocals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)

clas

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

s float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '—"'; a '+' sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or negative
infinity. More precisely, the input must conform to the following grammar after leading and trailing whitespace
characters are removed:

Slgn e "+" | nwn_mn

infinity = "Infinity" | "inf"

nan = "nan"

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here £ 1loatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same
value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, f1oat (x) delegatestox.___float__ ().If __float__ () isnotdefined
then it falls back to __index__ ().

If no argument is given, 0. 0 is returned.

Examples:

>>> float ('+1.23")
1.23
>>> float (' -12345\n")

(continues on next page)

11

The Python Library Reference, Release 3.9.20

(continued from previous page)

-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if _ _float__ () is not defined.

format (value[, f()rmat_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) istranslated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s __format__ ()
method. A TypeError exception is raised if the method search reaches ob ject and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

Note: Since private name mangling happens at compilation time, one must manually mangle a private at-
tribute’s (attributes with two leading underscores) name in order to retrieve it with getattr ().

globals ()
Return the dictionary implementing the current module namespace. For code within functions, this is set when
the function is defined and remains the same regardless of where the function is called.

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an At t ributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

Note: For objects with custom __hash___ () methods, note that hash () truncates the return value based
on the bit width of the host machine. See _ _hash__ () for details.

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function, when invoking help (), it means that
the parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only
parameters.

This function is added to the built-in namespace by the s ite module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)
Convert an integer number to a lowercase hexadecimal string prefixed with “Ox”. If x is not a Python int
object, it has to define an __index__ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!

>>> hex (-42)
'-0x2a'

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> ! ''$ 255, ! ''% 255, ! ' % 255

('oxff', 'ff', 'FEF'")

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('oxff', '"f£f', 'FEF')

>>> f'{255:4x}"', f£'{255:x}', £'{255:X}"

('oxff', 'ff', 'FEF')

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.

Raises an auditing event builtins . id with argument id.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('-—> ")

——> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

13

The Python Library Reference, Release 3.9.20

If the readline module was loaded, then input () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins.input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

class int ([x])
class int (x, base=10)

Return an integer object constructed from a number or string x, or return O if no arguments are given.
If x defines __int__ (), int (x) returns x.__int__ (). If x defines _ index__ (), it returns x.
__index__ (). If x defines __trunc__ (), itreturns x.__trunc__ (). For floating point numbers,
this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits O to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010"', 0) is not legal,
while int ('010") is,aswellas int ('010"', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base.__index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int___
instead of base.__index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.
Changed in version 3.8: Falls back to __index__ () if __int__ () is not defined.

Changed in version 3.9.14: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueError is raised when the limit is exceeded while converting a string x to an int or
when converting an int into a string would exceed the limit. See the infeger string conversion length limitation
documentation.

isinstance (object, classinfo)

Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo
is a tuple of type objects (or recursively, other such tuples), return True if object is an instance of any of the
types. If classinfo is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass (class, classinfo)

Return True if class is a subclass (direct, indirect or virfual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects (or recursively, other such tuples), in which case return True
if class is a subclass of any entry in classinfo. In any other case, a TypeError exception is raised.

iter (object[, sentinel])

Return an iferator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the itera-
tion protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is
raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in
this case will call object with no arguments for each call toits ___next___ () method; if the value returned is
equal to sentinel, St opIterat ion will be raised, otherwise the value will be returned.

See also Ilterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

from functools import partial
with open ('mydata.db', 'rb') as f:
for block in iter (partial(f.read, 64), b''"):
process_block (block)

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

CPython implementation detail: 1en raises OverflowError on lengths larger than sys.maxsize,
such as range (2 ** 100).

class list ([iterable])
Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks. Note that at the module level,
locals () and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where
the function inputs are already arranged into argument tuples, see i tertools.starmap ().

max (iterable, *[, key, default])
max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iferable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

class memoryview (object)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned.
If two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

15

The Python Library Reference, Release 3.9.20

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapqg.
nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.

Changed in version 3.8: The key can be None.

next (iterator[, default])

Retrieve the next item from the iterator by calling its ___next___ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopIteration is raised.

class object

Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a ___dict__, so you can't assign arbitrary attributes to an instance of the
object class.

oct (x)

Convert an integer number to an octal string prefixed with “0o”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

If you want to convert an integer number to octal string either with prefix “0o” or not, you can use either of
the following ways.

>>> ! ''% 10, " ''% 10

('0o12", '12")

>>> format (10, '#0'), format (10, 'o')
('0o12", '12")

>>> f'{10:40}', f£'{10:0}"

('0o012", '12")

See also format () for more information.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See
tut-files for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file
to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed
when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are 'w ' for writing (truncating the file if it already exists),
'x ' for exclusive creation and 'a ' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent: locale.getpreferredencoding (False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

Character | Meaning

'r' open for reading (default)

"w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode

Tt text mode (default)

T+ open for updating (reading and writing)

The default mode is 'r' (open for reading text, synonym of 'rt'). Modes 'w+' and 'w+b' open and
truncate the file. Modes ' r+' and ' r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode
(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

There is an additional mode character permitted, 'U"', which no longer has any effect, and is considered
deprecated. It previously enabled universal newlines in text mode, which became the default behaviour in
Python 3.0. Refer to the documentation of the newline parameter for further details.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
in bytes of a fixed-size chunk buffer. Note that specifying a buffer size this way applies for binary buffered
I/0, but Text IOWrapper (i.e., files opened with mode="r+") would have another buffering. To disable
buffering in Text IOWrapper, consider using the write_through flag for io. Text TOWrapper.
reconfigure (). When no buffering argument is given, the default buffering policy works as follows:

« Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on i 0. DEFAULT_BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

o “Interactive” text files (files for which i satty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever locale.getpreferredencoding () returns),
but any text encoding supported by Python can be used. See the codecs module for the list of supported
encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though
any error handling name that has been registered with codecs. register_error () is also valid. The
standard names include:

e 'strict' toraisea ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes areplacement marker (such as ' ? ') to be inserted where there is malformed data.

e 'surrogateescape' will represent any incorrect bytes as low surrogate code units ranging from
U+DC80 to U+DCFF. These surrogate code units will then be turned back into the same bytes when the
surrogateescape error handler is used when writing data. This is useful for processing files in an
unknown encoding.

17

The Python Library Reference, Release 3.9.20

e 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference &#nnn; .

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

e 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . }
escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, ' ', '\n",
"\r',and '\r\n"'. It works as follows:

o When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
theinputcanendin '\n', "\r',or '\r\n"', and these are translated into ' \n ' before being returned
to the caller. If itis ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

« When writing output to the stream, if newline is None, any '\n"' characters written are translated to
the system default line separator, os. 1 inesep. If newlineis ' ' or '\n"', no translation takes place.
If newline is any of the other legal values, any ' \n' characters written are translated to the given string.

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd must be True (the default) otherwise an
error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os . open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open(path, flags, dir_fd=dir_f£fd)

>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_f£fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io0. TextIOBase
(specifically i0. Text TOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of i0.BufferedIOBase. The exact class varies: in read binary mode, it returns an
io.BufferedReader;in write binary and append binary modes, it returns an io. BufferedWriter,
and in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream,
asubclass of 10.RawIOBase, io.FileIO,isreturned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Raises an auditing event open with arguments £ile, mode, flags.
The mode and f1lags arguments may have been modified or inferred from the original call.
Changed in version 3.3:
o The opener parameter was added.
e The 'x' mode was added.

e TOError used to be raised, it is now an alias of OSError.

18

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

e FileExistsError is now raised if the file opened in exclusive creation mode ('x"') al-
ready exists.

Changed in version 3.4:

o The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 3.10: The 'U' mode.
Changed in version 3.5:

« If the system call is interrupted and the signal handler does not raise an exception, the function
now retries the system call instead of raising an TnterruptedError exception (see PEP
475 for the rationale).

e The 'namereplace"' error handler was added.

Changed in version 3.6:
« Support added to accept objects implementing os. PathLike.

« On Windows, opening a console buffer may return a subclass of i 0. RawIOBase other than
io.FileIO.

ord (¢)
Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a') returns the integer 97 and ord ('€"') (Euro sign) returns 8364.
This is the inverse of chr ().

pow (base, exp[, mod])
Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more

efficiently than pow (base, exp) $%$ mod). The two-argument form pow (base, exp) isequivalent to
using the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, pow (10, 2) returns 100, but pow (10, -2) returns 0.01. For a negative base of type
int or f1oat and a non-integral exponent, a complex result is delivered. For example, pow (-9, 0.5)
returns a value close to 37.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero.
If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base,
—exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 % 97 == 1
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument
to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

19

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.9.20

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream
is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)

Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self. x = None

def getx(self):
return self._x

def setx(self, wvalue):
self._x = value

def delx(self):
del self. x

x = property(getx, setx, delx, "I'm the 'x' property.")

If c is an instance of C, c . x will invoke the getter, c.x = value will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def _ init_ (self):
self._x = None

@property

def x(self):
"""I'm the 'x' property."""
return self._x

@x.setter

(continues on next page)

20

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

(continued from previous page)

def x(self, wvalue):
self._x = value

@x.deleter
def x(self):
del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property object also has the attributes fget, fset, and £del corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range (stop)

class range (start, stop[, step])
Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)
Return a string containing a printable representation of an object. For many types, this function makes an
attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga __repr__ () method.

reversed (seq)
Return a reverse iterator. seq must be an object which has a ___reversed__ () method or supports the
sequence protocol (the _ len_ () method and the _ getitem__ () method with integer arguments
starting at 0).

round (number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0,and round (1.5) is 2). Any integer value is valid for ndigits
(positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the return
value has the same type as number.

For a general Python object number, round delegates to number.__round__.

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t
be represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, 1ist, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided
the object allows it. For example, setattr (x, 'foobar', 123) isequivalenttox.foobar = 123.

21

The Python Library Reference, Release 3.9.20

Note: Since private name mangling happens at compilation time, one must manually mangle a private at-
tribute’s (attributes with two leading underscores) name in order to set it with setattr ().

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). The
start and step arguments default to None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They have no other explicit functionality;
however they are used by NumPy and other third party packages. Slice objects are also generated when
extended indexing syntax is used. For example: a [start:stop:step] ora[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, /, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

The sort algorithm uses only < comparisons between items. While definingan ___1t__ () method will suffice
for sorting, PEP 8 recommends that all six rich comparisons be implemented. This will help avoid bugs when
using the same data with other ordering tools such as max () that rely on a different underlying method. Im-
plementing all six comparisons also helps avoid confusion for mixed type comparisons which can call reflected
the __gt__ () method.

For sorting examples and a brief sorting tutorial, see sortinghowto.

@staticmethod
Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f (argl, arg2, ...):

The @staticmethod form is a function decorator - see function for details.
A static method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()).

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call staticmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

class C:
builtin_open = staticmethod (open)

For more information on static methods, see types.

class str (object=")
class str (object=b", encoding="utf-8’, errors='strict’)
Return a st r version of object. See st r () for details.

22 Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0008

The Python Library Reference, Release 3.9.20

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum (iterable, /, start=0)
Sums start and the items of an iterable from left to right and returns the total. The iterable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

super ([type[, object-or-type]])
Return a proxy object that delegates method calls to a parent or sibling class of #ype. This is useful for accessing
inherited methods that have been overridden in a class.

The object-or-type determines the method resolution order to be searched. The search starts from the class right
after the type.

For example, if __mro___ of object-or-typeisD -> B —> C —-> A —> object and the value of rype
is B, then super () searches C —> A -> object.

The _ mro__ attribute of the object-or-type lists the method resolution search order used by both
getattr () and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is
updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type?2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that such implementations have the same calling signature in
every case (because the order of calls is determined at runtime, because that order adapts to changes in the
class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:

super (C, self).method(arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple ([iterable])
Rather than being a function, tupIe is actually an immutable sequence type, as documented in 7uples and
Sequence Types — list, tuple, range.

23

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.9.20

class type (object)
class type (name, bases, dict, **kwds)

With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object.__class_ .

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the ___name___ attribute. The bases tuple contains the base
classes and becomes the ___bases___ attribute; if empty, ob ject, the ultimate base of all classes, is added.
The dict dictionary contains attribute and method definitions for the class body; it may be copied or wrapped
before becoming the _ dict__ attribute. The following two statements create identical ¢ ype objects:

>>> class X:
a =1

>>> X = type('X', (), dict(a=1))

See also Type Objects.

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery
(usually __init_subclass__ ()) in the same way that keywords in a class definition (besides metaclass)
would.

See also class-customization.

Changed in version 3.6: Subclasses of type which don’t override type.___new__ may no longer use the
one-argument form to get the type of an object.

vars ([object])

Returnthe __ dict__ attribute for a module, class, instance, or any other object witha ___dict___ attribute.

Objects such as modules and instances have an updateable __ dict__ attribute; however, other ob-
jects may have write restrictions on their __ dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

Without an argument, vars () acts like Jocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

A TypeError exception is raised if an object is specified but it doesn’t have a __dict__ attribute (for
example, if its class defines the __slots__ attribute).

zip (*iterables)

Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument,
it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(*iterables):
zip('ABCD', 'xy') —--> AxXx By
sentinel = object ()
iterators = [iter (it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple (result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s)] *n) . This repeats the same iterator n times so that

24

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.9.20

each output tuple has the result of n calls to the iterator. This has the effect of dividing the input into n-length
chunks.

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use i tertools.zip_longest () instead.

zip () in conjunction with the * operator can be used to unzip a list:

>> x = [1, 2, 3]

>>> vy = [4, 5, 6]

>>> zipped = zip(x, V)

>>> list (zipped)

[, 4), (2, 5y, (3, 6)]

>>> x2, y2 = zip(*zip(x, Vy))

>>> x == list(x2) and y == list (y2)
True

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike import1ib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui It ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same
goals and does not cause issues with code which assumes the default import implementation is in use. Direct
use of ___import__ () isalso discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at
all, and uses its globals only to determine the package context of the import statement.

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __ _import__ ('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __ _import__ ('spam.ham', globals (), locals(), [], 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage'], 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam. ham module is returned from ___ import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

25

https://www.python.org/dev/peps/pep-0302
https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.9.20

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

Changed in version 3.9: When the command line options —E or —I are being used, the environment variable
PYTHONCASEOK is now ignored.

26 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the hooI type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq (), __ 1t (),
_add___ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the

other type; may be returned by the in-place binary special methods (e.g. _ _imul__ (), __iand__ (),
etc.) for the same purpose. It should not be evaluated in a boolean context.

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the
reflected operation on the other type (or some other fallback, depending on the operator). If all at-
tempts return Not Implemented, the interpreter will raise an appropriate exception. Incorrectly return-
ing Not Implemented will result in a misleading error message or the Not Implemented value being
returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Changed in version 3.9: Evaluating Not Implemented in a boolean context is deprecated. While it currently
evaluates as true, it will emit a DeprecationWarning. It will raise a TypeError in a future version of
Python.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types.

_ _debug_
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

27

The Python Library Reference, Release 3.9.20

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemEx1t with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

28 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for
equality, tested for truth value, and converted to a string (with the repr () function or the slightly different st r ()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or whi 1e condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a ___bool__ () method that returns False
ora___len () method that returns zero, when called with the object.' Here are most of the built-in objects
considered false:

o constants defined to be false: None and False.
« zero of any numeric type: 0, 0.0, 0j, Decimal (0),Fraction (0, 1)
o empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is false, then y, else x €))]
x and vy | if xis false, then x, else y 2)
not x if x is false, then True, else False | (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

29

The Python Library Reference, Release 3.9.20

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b isa syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z isequivalentto x < y
and y <= z,except that yis evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined
but for some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only
defined where they make sense; for example, they raise a TypeError exception when one of the arguments is a
complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__ (),and __ge__ () (in general,
_1t__ () and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: infegers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys. f1oat_ info. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z . imag. (The standard library includes the additional numeric types fractions.Fraction, for rationals, and
decimal.Decimal, for floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an
exponent sign yield floating point numbers. Appending ' j ' or 'J' to a numeric literal yields an imaginary number
(a complex number with a zero real part) which you can add to an integer or float to get a complex number with real
and imaginary parts.

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.”

The constructors int (), f1oat (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-
summary):

Operation Result Notes| Full documen-
tation
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y D
X %y remainder of x / y 2)
-x x negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6)| int ()
float (x) x converted to floating point @) 6)| float ()
complex (re, a complex number with real part re, imaginary part im. im | (6) complex ()
im) defaults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % y) 2) divmod ()
pow (X, V) X to the power y 5) pow ()
X ** y X to the power y (®)]
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-=1) //2is=1,1// (-2)
is-1,and (-1)// (-2) is O.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. f1oor () and
math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0, 0) and 0 ** 0 to be 1, as is common for programming languages.

(6) The numeric literals accepted include the digits O to 9 or any Unicode equivalent (code points with the Nd
property).

See https://www.unicode.org/Public/13.0.0/ucd/extracted/DerivedNumericType.txt for a complete list of
code points with the Nd property.

All numbers.Real types (int and f1oat) also include the following operations:

Operation Result

math.trunc (x) | xtruncated to Tntegral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math. floor (x) | the greatest Integral <=Xx

math.ceil (x) the least Tntegral >=x

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 31

https://www.unicode.org/Public/13.0.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.9.20

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Notes:

Operation | Result Notes
X |y bitwise or of x and y %)

X Ny bitwise exclusive or of xand y | (4)

X &y bitwise and of x and y 4)

x << n x shifted left by n bits (H(©2)
X >> n x shifted right by n bits (H3)
~X the bits of x inverted

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by #n bits is equivalent to multiplication by pow (2, n).

(3) A right shift by n bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representa-

tion (a working bit-widthof 1 + max (x.bit_length (), y.bit_length ()) or more) is sufficient
to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that
2** (k-1) <= abs(x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly
rounded logarithm, then k = 1 + int (log(abs(x), 2)). If xis zero, then x.bit_length ()
returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') ——> 6

New in version 3.1.

32

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

int.to_bytes (length, byteorder, *, signed=False)

Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

b \xfA\XFE\XE\XEA\XEF\XEE\XEE\xEf\xfc\x00"'

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError israised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1ittle", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed isFalse
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_bytes (bytes, byteorder, *, signed=False)

Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1itt1le", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

int.as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator.
The integer ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

New in version 3.8.

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.9.20

4.4.3 Additional Methods on Float

The float type implements the numbers . Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while fl1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1oat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3 . a7p1 0 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
'0x1.d380000000000p+11"

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

4.4.4 Hashing of numeric types

For numbers x and vy, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (seethe _ _hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 on machines with 32-bit C longs
andP = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m *
invmod(n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e« If x = m / n isanonnegative rational number and n is divisible by P (but m is not) then n has no inverse
modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.
hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as —hash (—x) . If the resulting hash is -1,
replace it with —2.

o The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have
the same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined by com-
puting hash (z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.
hash_info.width — 1)). Again, if the resultis —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
""rncompute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

meen

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m $ P == n % P ==
m, n=m// P, n//P
if n $ P ==
hash_value = sys.hash_info.inf
else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = —-hash_value
if hash_value == -1:

hash_value = -2

return hash_value

def hash_float (x):

(continues on next page)

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.9.20

(continued from previous page)

"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""
hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL.

iterator.__next__ ()
Return the next item from the container. If there are no further items, raise the St opIterat ion exception.
This method corresponds to the t p_iternext slot of the type structure for Python objects in the Python/C
APIL.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next___ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter_ () and _ _next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for process-
ing of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and
* (repetition) operations have the same priority as the corresponding numeric operations.”

Operation Result Notes
x in s True if an item of s is equal to x, else False (D)

x not in s False if an item of s is equal to x, else True (1)

s + t the concatenation of s and ¢ ©)(7)
S * norn * s equivalent to adding s to itself n times)7
s[1i] ith item of s, origin O 3)
s[i:J] slice of s from i to j 3@
s[i:3:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, 1il, index of the first occurrence of x in s (at or after index i and before index | (8)
j11))

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in Heggsﬂ
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

3 They must have since the parser can't tell the type of the operands.

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.9.20

3)

“4)

(&)

(6)

)

®)

>>> lists = [[]] * 3
>>> lists

[ry, 1, (11

>>> lists[0].append(3)
>>> lists

[e31, 31, [311]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of 11 st s modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(31, s1, [711]

Further explanation is available in the FAQ entry fag-multidimensional-list.

If i or j is negative, the index is relative to the end of sequence s: len (s) + 1iorlen(s) + 7 issubsti-
tuted. But note that -0 is still 0.

The slice of s from i to j is defined as the sequence of items with index k suchthat i <= k < j.Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).
If i is greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items with index x = 1 + n*k such that
0 <= n < (j-1i) /k. In other words, the indices are i, i+k, 1+2*k, 1+3*k and so on, stopping when
Jj is reached (but never including j). When k is positive, i and j are reduced to len (s) if they are greater.
When £ is negative, i and j are reduced to len (s) - 1 if they are greater. If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

« if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

« if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO,or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

« if concatenating t uple objects, extend a 1ist instead
« for other types, investigate the relevant class documentation

Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s [i: 7] .index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

4.6.2 Immutable Sequence Types
The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up1e instances, to be used as di ct keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom se-
quence types.

In the table s is an instance of a mutable sequence type, 7 is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7j] sameas s[i:3] = []

s[i:j:k] =t the elements of s [1i:7:k] are replaced by those of ¢ @))

del s[i:j:k] removes the elements of s [i:7:k] from the list

s.append (x) appends x to the end of the sequence (same as s[len(s) :len(s)] =

[x])

s.clear () removes all items from s (same as del s[:]))

s.copy () creates a shallow copy of s (same as s[:]) ®))

s.extend (t) or s | extends s with the contents of ¢ (for the most part the same as

+= t s[len(s):len(s)] = t)

S *=n updates s with its contents repeated n times (6)

s.insert (i, x) inserts x into s at the index given by i (same as s [i:1] = [x])

s .pop () or s. | retrieves the item at i and also removes it from s)

pop (1)

S.remove (X) remove the first item from s where s [1] is equal to x 3)

s.reverse () reverses the items of s in place 4)
Notes:

(1) ¢ must have the same length as the slice it is replacing.
(2) The optional argument i defaults to —1, so that by default the last item is removed and returned.
(3) remove () raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large se-
quence. To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

New in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing ___index__ (). Zero and negative values of x clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.9.20

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

class list([itemble])

Lists may be constructed in several ways:
o Using a pair of square brackets to denote the empty list: []
« Using square brackets, separating items with commas: [a], [a, b, c]
» Using a list comprehension: [x for x in iterable]
« Using the type constructor: 1ist () or list (iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similarto iterable[:]. Forexample, 1ist ('abc') returns ['a', 'b', 'c']
and 1ist ((1, 2, 3)) returns [1, 2, 3]. If noargument is given, the constructor creates a new
empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

40

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable])
Tuples may be constructed in a number of ways:

« Using a pair of parentheses to denote the empty tuple: ()

« Using a trailing comma for a singleton tuple: a, or (a,)

o Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iferable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') andtuple([1, 2,
3]) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b,
c) is a function call with three arguments, while £ ((a, b, c¢)) is a function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index__ () special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1i] = start + step*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] = start +
step*1i, but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ())may raise OverflowError

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

(continues on next page)

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.9.20

(continued from previous page)

>>> list (range (0, -10, -1))
[Or _11 _21 _37 _41 _51 _67 _71 _81 _91
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation
will usually violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the sfop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular 1 ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range (2, 1, 3) or
range (0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘=" to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

« The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

42 Chapter 4. Built-in Types

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.9.20

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

« Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes"
o Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")

class str (object=b", encoding="utf-8’, errors=’strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns type (object) .__str__ (object),
which is the “informal” or nicely printable string representation of object. For string objects, this is the string
itself. If object does nothavea __str__ () method, then st () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytesor bytearray).
In this case, if object isa bytes (or bytearray) object, then str (bytes, encoding, errors) is
equivalent to bytes. decode (encoding, errors). Otherwise, the bytes object underlying the buffer
object is obtained before calling bytes.decode (). See Binary Sequence Types — bytes, bytearray, mem-
oryview and bufferobjects for information on buffer objects.

Passing a bytes object to st () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"blzoot! ™

For more information on the st r class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.9.20

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.capitalize ()

Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that
characters like digraphs will only have their first letter capitalized, instead of the full character.

str.casefold()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter ' 3 ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to '3 '; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.

New in version 3.3.

str.center (width[, fillchar])

Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1len (s) .

str.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)

Return an encoded version of the string as a bytes object. Default encodingis 'ut £-8"'. errors may be given to
set a different error handling scheme. The default for errorsis ' strict ', meaning that encoding errors raise
a UnicodeError. Other possible values are 'ignore', 'replace’', 'smlcharrefreplace’,
'backslashreplace' and any other name registered via codecs.register_error (), see sec-
tion Error Handlers. For a list of possible encodings, see section Standard Encodings.

By default, the errors argument is not checked for best performances, but only used at the first encoding error.
Enable the Python Development Mode, or use a debug build to check errors.

Changed in version 3.1: Support for keyword arguments added.

Changed in version 3.9: The errors is now checked in development mode and in debug mode.

str.endswith (su]ﬁx[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (fabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\ r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

str.

str.

str.

str.

str.

str.

>>> '01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s [start :end]. Optional
arguments start and end are interpreted as in slice notation. Return -1 if sub is not found.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

format (*args, **kwargs)

Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 is " format (1+2)
'The sum of 1 + 2 is 3!

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with
the n type (ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the
LC_NUMERIC locale to decode decimal_point and thousands_sep fields of localeconv () if
they are non-ASCII or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE
locale. This temporary change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

format_map (mapping)
Similar to str.format (**mapping), except that mapping is used directly and not copied to a dict.
This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido'"))
'Guido was born in country'

New in version 3.2.

index (sub[, start[, end]])
Like find (), but raise ValueError when the substring is not found.

isalnum ()

Return True if all characters in the string are alphanumeric and there is at least one character, False
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.
isdecimal (), c.isdigit (),or c.isnumeric ().

isalpha ()
Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.9.20

str.

str.

str.

str.

str.

str.

str

str.

str.

Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “L1”, or “Lo”. Note that this is different from
the “Alphabetic” property defined in the Unicode Standard.

isascii ()

Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII char-
acters have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility superscript
digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return True if the string is a valid identifier according to the language definition, section identifiers.

Call keyword. iskeyword () to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello')
(True, False)

>>> 'def'.isidentifier (), iskeyword('def')
(True, True)

islower ()
Return True if all cased characters* in the string are lowercase and there is at least one cased character,
False otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

.isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout or sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

istitle ()

Return True if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return False
otherwise.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

str.

str.

str.

str.

str.

isupper ()
Return True if all cased characters® in the string are uppercase and there is at least one cased character,
False otherwise.

>>> 'BANANA'.isupper ()
True

>>> 'banana'.isupper ()
False

>>> 'baNana'.isupper ()
False

>>> ' ' isupper ()
False

join (iterable)

Return a string which is the concatenation of the strings in iterable. A TypeError will be raised if there
are any non-string values in iterable, including byt es objects. The separator between elements is the string
providing this method.

1just (width|, fillchar])
Return the string left justified in a string of length widrh. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to len (s).

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious " 1lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

See str.removeprefix () for a method that will remove a single prefix string rather than all of a set of
characters. For example:

>>> 'Arthur: three!'.lstrip('Arthur: ')

'eel!
>>> 'Arthur: three!'.removeprefix ('Arthur: ")
'three!'

static str.maketrans (x[, y[, Z]])

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

str.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

str.removeprefix (prefix, /)

If the string starts with the prefix string, return string [len (prefix) :]. Otherwise, return a copy of the
original string:

4.7. Text Sequence Type — str 47

The Python Library Reference, Release 3.9.20

str.

str.

str.

str

str

str.

str

str

str.

>>> 'TestHook'.removeprefix ('Test'")
'Hook'

>>> 'BaseTestCase'.removeprefix ('Test')
'BaseTestCase'’

New in version 3.9.

removesuffix (suffix, /)
If the string ends with the suffix string and that suffix is not empty, return string[:-len (suffix)].
Otherwise, return a copy of the original string:

>>> 'MiscTests'.removesuffix('Tests')
'Misc'

>>> '"TmpDirMixin'.removesuffix ('Tests')
'TmpDirMixin'

New in version 3.9.

replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

rfind (sub[, start[, end]])
Return the highest index in the string where substring sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

.rindex (sub[, start[, end]])

Like rfind () butraises ValueError when the substring sub is not found.

.rjust (width[,ﬁllchar])

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

.rsplit (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaveslike split () which is described in detail below.

.rstrip([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ'

See str.removesuffix () for a method that will remove a single suffix string rather than all of a set of
characters. For example:

>>> 'Monty Python'.rstrip(' Python')

lMl
>>> 'Monty Python'.removesuffix (' Python')
'Monty'

split (sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit

48

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1', '', '2']). The sep argument may consist of multiple
characters (for example, ' 1<>2<>3"'.split ('<>") returns ['1', '2', '3']). Splitting an empty
string with a specified separator returns ['"'].

For example:

>>> '1,2,3".split (', ")

['1', '2" '3']

>>> '1,2,3".split (', "', maxsplit=1)
['1" '2,3'}

>>> '1,2,,3,"'.split (', ")

['1', '2|, ll, |3|, IV]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> '1 2 3'.split ()

rrar, '2', '3']

>>> '1 2 3'.split (maxsplit=1)
['12', '2 3']

>>> ! 1 2 3 '.split ()
[rav, '2', '3']

str.splitlines (keepends=False)
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal

newlines.
Representation | Description
\n Line Feed
\r Carriage Return
\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation
\f or \x0c Form Feed
\xlc File Separator
\x1d Group Separator
\xle Record Separator
\x85 Next Line (C1 Control Code)
\u2028 Line Separator
\u2029 Paragraph Separator

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines/()

['ab c¢', "', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.9.20

str.

str.

str.

>>> "" splitlines ()

[]
>>> "One line\n".splitlines()
['One line']

For comparison, split ('\n"') gives:

>>> "' split ('\n")

['']

>>> 'Two lines\n'.split('\n")
["Two lines', '']

startswith (preﬁx[, start[, end]])

Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

strip ([chars])

Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious'

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ')
'Section 3.2.1 Issue #32'

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is
not necessarily true that s . swapcase () . swapcase () == s.

str.title ()

Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title ()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

The string.capwords () function does not have this problem, as it splits words on spaces only.

Alternatively, a workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r" [A-Za-z]+ (' [A-Za-z]+)?",

(continues on next page)

50

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

(continued from previous page)

lambda mo: mo.group(0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)
Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via __getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupErrozr exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in dif-
ferent formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()
Return a copy of the string with all the cased characters* converted to uppercase. Note that s . upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£fill (width)
Return a copy of the string left filled with ASCII ' 0' digits to make a string of length width. A leading sign
prefix (' +'/'—") is handled by inserting the padding after the sign character rather than before. The original
string is returned if width is less than or equal to 1en (s).

For example:

>>> "42" zfill (5)
'00042"

>>> "-42" zfi11l(5)
'-0042"

4.7.2 printf-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r.
format () interface, or template strings may help avoid these errors. Each of these alternatives provides their own
trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), % conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C
language.

If format requires a single argument, values may be a single non-tuple object.’ Otherwise, values must be a tuple with
exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '% "' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.9.20

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an '*' (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the string must include a
parenthesised mapping key into that dictionary inserted immediately after the '% "' character. The mapping key
selects the value to be formatted from the mapping. For example:

>>> print (' has quote types.' %
R {'language': "Python", "number": 2})
Python has 002 quote types.

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

"4#' | The value conversion will use the “alternate form” (where defined below).

'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

(a space) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

"+' | Asign character ('+' or '-"') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical
to %d.

The conversion types are:

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. (1)

'u’ Obsolete type - it is identical to 'd". 6)

'x! Signed hexadecimal (lowercase). 2)

X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E’ Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B! Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

¢! Single character (accepts integer or single character string).

'r! String (converts any Python object using repr ()). &)

's' String (converts any Python object using st r ()). 5)

'a' String (converts any Python object using ascii ()). (&)

'y No argument is converted, results in a ' %' character in the result.

52 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

Notes:
(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x' or 'X"' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.
(5) If precision is N, the output is truncated to N characters.
(6) See PEP 237.
Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

Changed in version 3.1: % f conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g
conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to
make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

o Single quotes: b'still allows embedded "double" quotes'
e Double quotes: b"still allows embedded 'single' quotes"
o Triple quoted: b'' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to vio-
late this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:

« A zero-filled bytes object of a specified length: bytes (10)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.9.20

« From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (obj)
Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1f2 ")
b' A\xfO\xf1\xf2"

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\xf1\xf2' .hex ()
'fOf1£2"

If you want to make the hex string easier to read, you can specify a single character separator sep param-
eter to include in the output. By default between each byte. A second optional bytes_per_sep parameter
controls the spacing. Positive values calculate the separator position from the right, negative values from
the left.

>>> value = b'\xfO\xfl\xf2'
>>> value.hex ('-")

'fO-f1-£2"

>>> value.hex (' ', 2)
'fO_f1f2"

>>> b'UUDDLRLRAB' .hex (' ', —4)

'55554444 4c524c52 4142"

New in version 3.5.

Changed in version 3.8: bytes.hex () now supports optional sep and bytes_per_sep parameters to
insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'..."') since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to byt es objects.

class bytearray ([source[, encoding[, errors]]])
There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

o Creating an empty instance: bytearray ()

» Creating a zero-filled instance with a given length: bytearray (10)

« From an iterable of integers: bytearray (range (20))

» Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Byfes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1£2 ")
bytearray (b' . \xf0\xf1\xf2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not
just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£2"') .hex ()
'fOf1£2"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b [0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (oytearray (b' ... ")) since itis often more
useful than e.g. bytearray ([46, 46, 46]). Youcan always convert a bytearray object into a list of integers
using 1ist (b).

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.9.20

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"
b = a.replace("a", "f")

a = b"abc"
b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format
may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, end]])

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.removeprefix (prefix, /)

bytearray.removeprefix (prefix, /)
If the binary data starts with the prefix string, return bytes [len (prefix) :]. Otherwise, return a copy
of the original binary data:

>>> pb'TestHook'.removeprefix (b'Test"')
b'Hook'

>>> b'BaseTestCase'.removeprefix(b'Test"')
b'BaseTestCase'

The prefix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

New in version 3.9.

bytes.removesuffix (suffix, /)

bytearray.removesuffix (suffix, /)
If the binary data ends with the suffix string and that suffix is not empty, return bytes [:-len (suffix)].
Otherwise, return a copy of the original binary data:

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

>>> b'MiscTests'.removesuffix(b'Tests")
b'Misc'

>>> pb'TmpDirMixin'.removesuffix (b'Tests")
b'TmpDirMixin'

The suffix may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

New in version 3.9.

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is 'ut £-8"'. errors may be given to set a
different error handling scheme. The default for errors is ' strict ', meaning that encoding errors raise a
UnicodeError. Other possible values are 'ignore', 'replace’' and any other name registered via
codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section
Standard Encodings.

By default, the errors argument is not checked for best performances, but only used at the first decoding error.
Enable the Python Development Mode, or use a debug build to check errors.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing
to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.
Changed in version 3.9: The errors is now checked in development mode and in debug mode.

bytes.endswith (suﬁix[, start[, end]])

bytearray.endswith (suﬁix[, start[, end]])
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be
a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The suffix(es) to search for may be any byfes-like object.

bytes.find (sub[, start[, endﬂ])
bytearray.find (sub[, start|, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is
not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note: The £ind () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.index (sub[, start[, end]])
bytearray.index (sub[, start[, end]])
Like find (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.9.20

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeError will be raised if there are any values in iterable that are not bytes-like objects, including st r
objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, t0)
This static method returns a translation table usable for bytes. translate () that will map each character
in from into the character at the same position in fo; from and to must both be bytes-like objects and have the
same length.

New in version 3.1.

bytes.partition (sep)

bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

bytes.replace (0ld, new[, count])

bytearray.replace (old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rfind (sub[, start[, end]])

bytearray.rfind (sub[, starl[, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return —1 on failure.

The subsequence to search for may be any byres-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex (sub[, start[, end])
bytearray.rindex (sub[, start|, end]])
Like rfind () but raises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, /, delete=b")

bytearray.translate (table, /, delete=b")
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the fable argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII com-
patible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that
all of the bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width[, fillbyte])

bytearray.center (width[, ﬁllbyte])
Return a copy of the object centered in a sequence of length widrh. Padding is done using the specified fillbyte
(default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or equal
tolen(s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.ljust (width[, ﬁllbyte])

bytearray.ljust (width[, ﬁllbyte])
Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than
orequal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.lstrip([chars])

bytearray.lstrip([chars])
Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> b' spacious ".lstrip()
b'spacious !

>>> b'www.example.com'.lstrip(b'cmowz.")
b'example.com'

The binary sequence of byte values to remove may be any bytes-like object. See removeprefix () for a
method that will remove a single prefix string rather than all of a set of characters. For example:

>>> pb'Arthur: three!'.lstrip(b'Arthur: ")
b'ee!!

>>> p'Arthur: three!'.removeprefix(b'Arthur: ")
b'three!'

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.9.20

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rjust (width[, ﬁllbyte])
bytearray.rjust (width[,ﬁllbyte])

Return a copy of the object right justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if widrh is less than
orequal to len (s).

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.rsplit (sep=None, maxsplit=-1)
bytearray.rsplit (sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rsplit () behaves
like split () which is described in detail below.

bytes.rstrip ([chars])
bytearray.rstrip([chars])

Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.rstrip()

b’ spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any bytes-like object. See removesuffix () fora
method that will remove a single suffix string rather than all of a set of characters. For example:

>>> b'Monty Python'.rstrip(b' Python')

b'™M'

>>> pb'Monty Python'.removesuffix(b' Python')
b'Monty'

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.split (sep=None, maxsplit=-1)
bytearray.split (sep=None, maxsplit=-1)

Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit
is given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits
are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2"'.split (b', ') returns [b'1', b'', b'2']). The sep argument may con-
sist of a multibyte sequence (for example, b'1<>2<>3"'.split (b'<>") returns [b'l', b'2",
b'3"1). Splitting an empty sequence with a specified separator returns [b' '] or [bytearray (b'"')]
depending on the type of object being split. The sep argument may be any byfes-like object.

For example:

60

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

>>> b'1,2,3".split(b',")

[b'1', b'2', b'3"]

>>> p'1,2,3".split(b', ', maxsplit=1)
[b'1', b'2,3"]

>>> p'1,2,,3,".split(b', ")

[b'1', b'2', "', b'3", b'"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whites-
pace are regarded as a single separator, and the result will contain no empty strings at the start or end if the
sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consist-
ing solely of ASCII whitespace without a specified separator returns [].

For example:

>>> pb'l 2 3'.split ()

[b'1l', b'2', b'3"']

>>> p'l 2 3'.split (maxsplit=1)
[b'1l', b'2 3']

>>> b 1 2 3 '.split ()
[b'1', b'2', b'3"]

bytes.strip([chars])

bytearray.strip ([chars])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a
binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is
usually used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b spacious '.strip()
b'spacious'

>>> b'www.example.com'.strip(b'cmowz.")
b'example'

The binary sequence of byte values to remove may be any byfes-like object.

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize ()

bytearray.capitalize ()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.expandtabs (fabsize=8)

bytearray.expandtabs (tabsize=8)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every fabsize bytes (default is
8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to
zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more
space characters are inserted in the result until the current column is equal to the next tab position. (The tab
character itself is not copied.) If the current byte is an ASCII newline (b ' \n"') or carriage return (b ' \r "),

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.9.20

it is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current
column is incremented by one regardless of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234" .expandtabs ()

b'01 012 0123 01234
>>> b'01\t012\t0123\t01234"' .expandtabs (4)
b'01 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.isalnum ()

bytearray.isalnum ()
Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal
digits are those byte values in the sequence b'0123456789"'.

For example:

>>> p'ABCabcl'.isalnum()
True
>>> Pb'ABC abcl'.isalnum/()
False

bytes.isalpha ()

bytearray.isalpha ()
Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ".

For example:

>>> b'ABCabc'.isalpha()
True
>>> p'ABCabcl'.isalpha ()
False

bytes.isascii ()

bytearray.isascii ()
Return True if the sequence is empty or all bytes in the sequence are ASCIL, False otherwise. ASCII bytes
are in the range 0-Ox7F.

New in version 3.7.

bytes.isdigit ()

bytearray.isdigit ()
Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False
otherwise. ASCII decimal digits are those byte values in the sequence b'0123456789"'.

For example:

>>> pb'1234"' .isdigit ()
True

>>> p'1.23".isdigit ()
False

bytes.islower ()

bytearray.islower ()
Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, False otherwise.

62 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

For example:

>>> b'hello world'.islower ()

True

>>> b'Hello world'.islower ()

False

Lowercase ASCI characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.isspace ()

bytearray.isspace ()
Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False other-
wise. ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f"' (space, tab,
newline, carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle ()
Return True if the sequence is ASCII titlecase and the sequence is not empty, Fal se otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle ()
True
>>> b'Hello world'.istitle()
False

bytes.isupper ()

bytearray.isupper ()
Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, False otherwise.

For example:

>>> Db'HELLO WORLD'.isupper ()

True

>>> b'Hello world'.isupper ()

False

Lowercase ASCII characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.lower ()

bytearray.lower ()
Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding low-
ercase counterpart.

For example:

>>> pb'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.9.20

bytes.splitlines (keepends=False)
bytearray.splitlines (keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab ¢', b''", b'de fg', b'kl']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike sp1it () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split (b'\n")
([b""], [b'Two lines', b''])

>>> b"" . splitlines (), b"One line\n".splitlines()
([], [b'One line'])

bytes.swapcase ()
bytearray.swapcase ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart and vice-versa.

For example:

>>> p'Hello World'.swapcase ()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ'.

Unlike str.swapcase (), it is always the case that bin.swapcase () .swapcase () == bin for
the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for
arbitrary Unicode code points.

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.title()
bytearray.title ()

Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCI characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

64

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

>>> p"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(rb" [A-Za-z]+ (' [A-Za-z]+)2",
lambda mo: mo.group(0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase(b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart.

For example:

>>> pb'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.z£fill (width)

bytearray.z£ill (width)
Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length width. A leading
sign prefix (b'+'/Db'~") is handled by inserting the padding after the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to 1en (seq) .

For example:

>>> p"42" . z£1i11 (5)
b'oo042"
>>> p"-42" zf111 (5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.9.20

4.8.4 printf-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary,
wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), $ conversion specifications in format are replaced with zero or more elements of values. The effect is similar
to using the sprint £ () in the C language.

If format requires a single argument, values may be a single non-tuple object.’ Otherwise, values must be a tuple
with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the ' ' character. The mapping key
selects the value to be formatted from the mapping. For example:

o)

>>> print (b' has quote types.' %
C. {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asigncharacter ('+"' or '-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python - so e.g. $1d is identical
to 3d.

The conversion types are:

66 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. €))]

'u! Obsolete type - it is identical to 'd'. ®)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single byte (accepts integer or single byte objects).

'b! Bytes (any object that follows the buffer protocol or has __bytes__ ()). 5)

's! 's' isan alias for 'b"' and should only be used for Python2/3 code bases. ©6)

'a' Bytes (converts any Python object using repr (obj).encode('ascii', | (5)
'backslashreplace')).

‘¢! 'r' is an alias for 'a' and should only be used for Python2/3 code bases. @)

'yt No argument is converted, results ina ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x ' or ' X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

6) b'%s

' is deprecated, but will not be removed during the 3.x series.

(7) b'%xr" is deprecated, but will not be removed during the 3.x series.

(8) See PEP 237.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even if no
changes were made.

See also:

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

4.8. Binary Sequence Types — bytes, bytearray, memoryview

67

https://www.python.org/dev/peps/pep-0237
https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.9.20

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (object)

Create a memoryview that references object. object must support the buffer protocol. Built-in objects that
support the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object. For many simple types such as bytes and bytearray, an element is a single byte, but other types
such as array . array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = 0, thelengthis I. If view.ndim =
1, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to
the length of the nested list representation of the view. The i temsi ze attribute will give you the number of
bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9f4350>
>>> bytes(v[1:4])

b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple
of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews
can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with
tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can
be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview (a)

>>> m[0]

-11111111

>>> m[—-1]

44444444

>>> m[::2].tolist ()

[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is
not allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview (data)
>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1:4] = b'123"

>>> data

bytearray (b'z123fg"')

>>> v[2:3] = b'spamn'

(continues on next page)

68

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

(continued from previous page)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spam'
>>> data
bytearray (b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The

hash is defined as hash (m) == hash (m.tobytes ()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg'")

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews
with formats ‘B’, ‘b’ or ‘c’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.
Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

_eq (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of st ruct format strings currently supported by tolist (), v and w are equal if v.

tolist () == w.tolist():

>>> import array

>>> a = array.array('1', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])
>>> ¢ = array.array('b', [5, 3, 11)

>>> x = memoryview (a)

>>> y = memoryview (b)

>>> x == a == y ==

True

>>> x.tolist () == a.tolist() == y.tolist () == b.tolist ()
True

>>> z = y[::-2]

>>> z ==

True

>>> z.tolist () == c.tolist ()

True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("v", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)
>>> b = memoryview (point)
>>> a == point

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.9.20

(continued from previous page)

False
>>> g ==
False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and
the logical array structure.

tobytes (order=None)

Return the data in the buffer as a bytestring. This is equivalent to calling the byt es constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
tobytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

New in version 3.8: order can be {C’, ‘F, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory.
In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to
C first. order=None is the same as order="C".

hex ([sep[, bytes _per_sep]])

Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"'

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), memoryview.hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist ()

Return the data in the buffer as a list of elements.

>>> memoryview (b'abc') .tolist ()

[97, 98, 99]

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31])
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

toreadonly ()

Return a readonly version of the memoryview object. The original memoryview object is unchanged.

>>> m = memoryview (bytearray(b'abc'))
>>> mm = m.toreadonly ()

>>> mm.tolist ()

[89, 98, 99]

>>> mm[0] = 42

Traceback (most recent call last):

(continues on next page)

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

(continued from previous page)

File "<stdin>", line 1, in <module>
TypeError: cannot modify read-only memory
>>> m[0] = 43
>>> mm.tolist ()

(43, 98, 99]

New in version 3.8.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
aview is held on them (for example, a byt earray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])
Cast a memoryview to a new format or shape. shape defaultsto [byte_length//new_itemsize],
which means that the result view will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the
original length.

Cast 1D/long to 1D/unsigned bytes:

>>> import array

>>> a = array.array('l', [1,2,31])
>>> X = memoryview(a)

>>> x.format

lll

>>> x.itemsize

8

>>> len (x)

>>> x.nbytes
24
>>> = x.cast('B")
>>> y.format

IBI

>>> y.itemsize

=

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.9.20

(continued from previous page)

1

>>> len (y)
24

>>> y.nbytes
24

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz'")
>>> x = memoryview (b)
>>> x[0] = b'a'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview: invalid value for format "B"
>>> y = x.cast('c")
>>> y[0] = Db'a'
>>> Db

bytearray(b'ayz')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

buf = struct.pack("i"*12,
memoryview (buf)
x.cast('i', shape=[2,2,3])
.tolist ()
1, 21, [3,
.format

>>> *list (range(12)))

>>> x =
>>> y =
>>> y

(eeo,

>>> vy

4, 511, [le, 7, 8], [9, 10, 11]]]

lil
>>> y.itemsize

>>> len(y)

>>>
48
>>> 7z =

y.nbytes

y.cast('b")
>>> z.format
lbl
>>> z.itemsize
>>>
48

>>>

48

len(z)

z .nbytes

Cast 1D/unsigned long to 2D/unsigned long:

>>> buf =

>>> X

struct.pack ("L"*6,
= memoryview (buf)
x.cast ('L', shape=[2,31])
len(y)

*1list (range (6)))

>>> vy
>>>
2
>>>
48
>>> y.tolist ()

(ro, 1, 21, (3, 4, 511

y.nbytes

New in version 3.3.

Changed in version 3.5: The source format is no longer restricted when casting to a byte view.

There are also several readonly attributes available:

72

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

obj

The underlying object of the memoryview:

>>> b = bytearray(b'xyz')
>>> m = memoryview (b)

>>> m.obj is b

True

New in version 3.3.

nbytes

nbytes == product (shape) * itemsize == len(m.tobytes()). This is the
amount of space in bytes that the array would use in a contiguous representation. It is not necessarily
equal to len (m):

>>> import array

>>> a = array.array('i', [1,2,3,4,51)
>>> m = memoryview(a)
>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack ("d"*12, *[1.5*x for x in range(12)])

>>> x = memoryview (buf)

>>> y = x.cast ('d', shape=[3,41])

>>> y.tolist ()

(.o, 1.5, 3.0, 4.5, (6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly

A bool indicating whether the memory is read only.

format

A string containing the format (in st ruct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are
restricted to native single element formats.

Changed in version 3.3: format 'B"' is now handled according to the struct module syntax. This means
that memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize

The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview (array.array ('H', [32000, 32001, 320021))
>>> m.itemsize

2

(continues on next page)

4.8.

Binary Sequence Types — bytes, bytearray, memoryview 73

The Python Library Reference, Release 3.9.20

(continued from previous page)

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize
True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct hashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len (set),and for x in set. Beingan unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used
as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable)
class frozenset (iterable])
Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be

74 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Sets can be created by several means:
o Use a comma-separated list of elements within braces: { ' jack', 'sjoerd'}
o Use a set comprehension: {c for ¢ in 'abracadabra' if c not in 'abc'}
o Use the type constructor: set (), set ('foobar'),set(['a', 'b', 'foo'l)
Instances of set and frozenset provide the following operations:

len(s)
Return the number of elements in set s (cardinality of s).

X in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, thatis, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union (*others)
set | other |
Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set ~ other
Return a new set with elements in either the set or other but not both.

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iter-
able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set ('abc') & 'cbs' in favor of the more readable
set ('abc') .intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if

4.9. Set Types — set, frozenset 75

The Python Library Reference, Release 3.9.20

the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set
if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set ('abc') == frozenset ('abc') returns True and so does set ('abc') in
set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==b, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update(),
difference_update (), and symmetric_difference_update () methods will accept any
iterable as an argument.

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set.
To support searching for an equivalent frozenset, a temporary one is created from elem.

76 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes,
and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictio-
naries or other mutable types (that are compared by value rather than by object identity) may not be used as keys.
Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such
as 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry. (Note however, that since
computers store floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

class dict (**kwargs)

class dict (mapping, **kwargs)

class dict (iterable, **kwargs)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Dictionaries can be created by several means:

o Use a comma-separated list of key: wvalue pairs within braces: { ' jack': 4098, 'sjoerd':
4127} or {4098: 'jack', 4127: 'sjoerd'}

o Use a dict comprehension: {}, {x: x ** 2 for x in range (10)}

e Use the type -constructor: dict (), dict([('foo', 100), ('bar', 200)1),
dict (foo=100, bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object
the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding
value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,
"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))

>>> d = dict([('two', 2), ('one', 1), ('three', 3)1])

>>> e = dict ({'three': 3, 'one': 1, 'two': 2})

>>> f = dict({'one': 1, 'three': 3}, two=2)

>>> a == b == ¢c == == e == f

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

list (d)
Return a list of all the keys used in the dictionary d.

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

4.10. Mapping Types — dict 77

The Python Library Reference, Release 3.9.20

If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation
calls that method with the key key as argument. The d [key] operation then returns or raises what-
ever is returned or raised by the __missing__ (key) call. No other operations or methods invoke
__missing__ (). If __missing__ () is not defined, KeyError israised. _ _missing__ ()
must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):
.. return 0
>>> ¢ = Counter|()

>>> c['red']
0

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. A different
_ _missing__ methodisused by collections.defaultdict.

d[key] = value
Set d[key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iterable and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as
an empty list. To get distinct values, use a dict comprehension instead.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, wvalue) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

pop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem ()

Remove and return a (key, wvalue) pair from the dictionary. Pairs are returned in LIFO (last-in,
first-out) order.

78

Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

reversed (d)
Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed (d.keys ()).

New in version 3.8.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict .values () view and another will always return False.
This also applies when comparing dict .values () to itself:

>>> d = {'a': 1}
>>> d.values () == d.values|{()
False

d | other
Create a new dictionary with the merged keys and values of d and other, which must both be dictionaries.
The values of other take priority when d and other share keys.

New in version 3.9.

d |= other
Update the dictionary d with keys and values from other, which may be either a mapping or an iterable
of key/value pairs. The values of other take priority when d and other share keys.

New in version 3.9.

Dictionaries compare equal if and only if they have the same (key, wvalue) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=’, >=’, >) raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after
deletion are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)
['one', '"two', 'three', 'four']
>>> list (d.values|())

(1, 2, 3, 4]
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

4.10. Mapping Types — dict 79

The Python Library Reference, Release 3.9.20

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implemen-
tation detail of CPython from 3.6.

Dictionaries and dictionary views are reversible.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (reversed(d))
["four', 'three', 'two', 'one']
>>> list (reversed(d.values()))

(4, 3, 2, 1]
>>> list (reversed(d.items()))
[("four', 4), ('three', 3), ('two', 2), ('one', 1)]

Changed in version 3.8: Dictionaries are now reversible.
See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict . keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, wvalue)) in the dictionary.

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip():pairs = zip(d.values (), d.keys()). Another way to create the same listispairs =
[(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

reversed (dictview)
Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse
order of the insertion.

Changed in version 3.8: Dictionary views are now reversible.

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since
the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections.abc. Set are available (for example, ==, <, or ").

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values/()

(continues on next page)

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

(continued from previous page)

>>> # iteration

>> n =0

>>> for val in values:
n += val

>>> print (n)

504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'"bacon'}

>>> keys ©~ {'sausage', 'Jjuice'}
{'juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the
statement body is executed and exited when the statement ends:

contextmanager.__enter_ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the a s clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the
with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be sup-
pressed. If an exception occurred while executing the body of the with statement, the arguments contain the
exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated spe-

4.11. Context Manager Types 81

The Python Library Reference, Release 3.9.20

cially beyond their implementation of the context management protocol. See the context 11b module for some
examples.

Python’s generators and the context1ib.contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the context1ib.contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and__exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.12 Generic Alias Type

GenericAlias objects are generally created by subscripting a class. They are most often used with container
classes,suchas 1istor dict. Forexample, 1ist [int] isa GenericAlias object created by subscripting the
1ist class with the argument int. GenericAlias objects are intended primarily for use with rype annotations.

Note: It is generally only possible to subscript a class if the class implements the special method
__class_getitem__ ().

A GenericAlias object acts as a proxy for a generic type, implementing parameterized generics.

For a container class, the argument(s) supplied to a subscription of the class may indicate the type(s) of the elements
an object contains. For example, set [bytes] can be used in type annotations to signify a set in which all the
elements are of type bytes.

For a class which defines __class_getitem__ () butisnot a container, the argument(s) supplied to a subscrip-
tion of the class will often indicate the return type(s) of one or more methods defined on an object. For example,
regular expressions can be used on both the st r data type and the bytes data type:

e If x = re.search('foo', 'foo'), x will be a re.Match object where the return values of x.
group (0) and x [0] will both be of type st . We can represent this kind of object in type annotations
with the GenericAlias re.Match[str].

e If y = re.search(b'bar', b'bar'), (note the b for bytes), y will also be an instance of re.
Mat ch, but the return values of v .group (0) and y [0] will both be of type bytes. In type annotations,
we would represent this variety of re. Match objects with re .Match [bytes].

GenericAlias objects are instances of the class t ypes.GenericAlias, which can also be used to create
GenericAlias objects directly.

T[X, Y, ...]
Creates a GenericAlias representing a type T parameterized by types X, Y, and more depending on the T
used. For example, a function expecting a 1 i st containing £ 1oat elements:

def average(values: list[float]) —-> float:
return sum(values) / len(values)

Another example for mapping objects, using a dict, which is a generic type expecting two type parameters
representing the key type and the value type. In this example, the function expects a dict with keys of type
st r and values of type int:

def send _post_request (url: str, body: dict[str, int]) -> None:

The builtin functions i sinstance () and issubclass () donotaccept GenericAlias types for their sec-
ond argument:

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

>>> isinstance([1, 2], list[str])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: isinstance () argument 2 cannot be a parameterized generic

The Python runtime does not enforce fype annotations. This extends to generic types and their type parameters.
When creating a container object from a GenericAlias, the elements in the container are not checked against
their type. For example, the following code is discouraged, but will run without errors:

>>> t = list([str]
>>> t([1, 2, 31)
[, 2, 3]

Furthermore, parameterized generics erase type parameters during object creation:

>>> t = list[str]
>>> type (t)
<class 'types.GenericAlias'>

>>> 1 = t()
>>> type (1)
<class 'list'>

Calling repr () or str () on a generic shows the parameterized type:

>>> repr(list[int])
'list[int]"

>>> str(list[int])
'list[int]"'

The _ getitem__ () method of generic containers will raise an exception to disallow mistakes like
dict[str] [str]:

>>> dict[str] [str]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: There are no type variables left in dict[str]

However, such expressions are valid when rype variables are used. The index must have as many elements as there
are type variable items in the GenericAlias object’s __args__ .

>>> from typing import TypeVar
>>> Y = TypeVar('y'")

>>> dict[str, Y][int]
dict[str, int]

4.12.1 Standard Generic Classes

The following standard library classes support parameterized generics. This list is non-exhaustive.
e tuple
e list
e dict
o set

o frozenset

e type

4.12. Generic Alias Type 83

The Python Library Reference, Release 3.9.20

e collections.deque

e collections.defaultdict

e collections.OrderedDict

e collections.Counter

e collections.ChainMap

e collections.abc.Awaitable

e collections.abc.Coroutine

e collections.abc.AsyncIterable
e collections.abc.AsyncIterator
e collections.abc.AsyncGenerator
e collections.abc.Iterable

e collections.abc.Iterator

e collections.abc.Generator

e collections.abc.Reversible

e collections.abc.Container

e collections.abc.Collection

e collections.abc.Callable

e collections.abc.Set

e collections.abc.MutableSet

e collections.abc.Mapping

e collections.abc.MutableMapping
e collections.abc.Sequence

e collections.abc.MutableSequence
e collections.abc.ByteString

e collections.abc.MappingView

e collections.abc.KeysView

e collections.abc.ItemsView

e collections.abc.ValuesView

e contextlib.AbstractContextManager
e contextlib.AbstractAsyncContextManager
e dataclasses.Field

e functools.cached property

e functools.partialmethod

e O0s.PathLike

e queue.LifoQueue

s queue.Queue

e queue.PriorityQueue

e queue.SimpleQueue

o re.Pattern

84 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

o re.Match

e shelve.BsdDbShelf

e shelve.DbfilenameShelf

e shelve.Shelf

e types.MappingProxyType

o weakref.WeakKeyDictionary
o weakref.WeakMethod

o weakref.WeakSet

e weakref.WeakValueDictionary

4.12.2 Special Attributes of GenericAlias objects

All parameterized generics implement special read-only attributes.

genericalias.__origin_
This attribute points at the non-parameterized generic class:

>>> list[int].__origin_
<class 'list'>

genericalias.__args_
This attribute is a tuple (possibly of length 1) of generic types passed to the original
__class_getitem__ () of the generic class:

>>> dict[str, list[int]].__args__
(<class 'str'>, list[int])

genericalias.__parameters_
This attribute is a lazily computed tuple (possibly empty) of unique type variables foundin __args__:

>>> from typing import TypeVar

>>> T = TypeVar('T"')
>>> 1ist[T].__parameters___
(~T,)

See also:
PEP 484 - Type Hints Introducing Python’s framework for type annotations.

PEP 585 - Type Hinting Generics In Standard Collections Introducing the ability to natively parameterize
standard-library classes, provided they implement the special class method __class_getitem__ ().

Generics, user-defined generics and typing.Generic Documentation on how to implement generic classes
that can be parameterized at runtime and understood by static type-checkers.

New in version 3.9.

4.12. Generic Alias Type 85

https://www.python.org/dev/peps/pep-0484
https://www.python.org/dev/peps/pep-0585

The Python Library Reference, Release 3.9.20

4.13 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.13.1 Modules

The only special operation on a module is attribute access: m . name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist,
rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is ___dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the ___dict___
attribute is not possible (you can writem.___dict__ ['a'] = 1, whichdefinesm.a to be 1, but you can’t write
m.__dict__ = {}). Modifying ___dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in)>. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.13.2 Classes and Class Instances

See objects and class for these.

4.13.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.13.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the se 1 f argument to the argument list.
Bound methods have two special read-only attributes: m.___self__ is the object on which the method operates,
andm.__ func__ is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) is
completely equivalent to callingm.__ func__ (m.__self , arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__ func_), setting method attributes on bound methods
is disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order
to set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> c = C()
>>> c.method.whoami = 'my name is method' # can't set on the method

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

(continues on next page)

86 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

(continued from previous page)

AttributeError: 'method' object has no attribute 'whoami'
>>> c.method. func_ .whoami = 'my name is method'

>>> c.method.whoami

'my name is method'

See types for more information.

4.13.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compi Ie () function and can be extracted from function
objects through their ___code___ attribute. See also the code module.

Accessing ___code___ raises an auditing event object .___getattr__ withargumentsobjand"___code__ ".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.13.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module ¢ ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.13.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.13.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named £11ipsis (abuilt-in name). type (E11ipsis) () produces the E11ipsis singleton.

Itis writtenas E11ipsisor....

4.13.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one Not Implemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.13. Other Built-in Types 87

The Python Library Reference, Release 3.9.20

4.13.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function hool () can be used
to convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

4.13.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.14 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict___
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class___
The class to which a class instance belongs.

class.__bases___
The tuple of base classes of a class object.

definition.___name___
The name of the class, function, method, descriptor, or generator instance.

definition.__qualname_
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro

class.__subclasses__ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. The list is in definition order. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

88 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

4.15 Integer string conversion length limitation

CPython has a global limit for converting between int and st r to mitigate denial of service attacks. This limit
only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are
unlimited. The limit can be configured.

The int type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”).
There exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a
large value suchas int ('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE-2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion
algorithm would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys
>>> sys.set_int_max_str_digits (4300) # Illustrative, this is the default.
>>> = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> 1 = int('2' * 4300)

>>> len(str(i))

4300

>>> 1 _squared = i*i

>>> len(str (i_squared))

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == 1*i1 # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys. int_info.default_max_str_digits. Thelowestlimit
that can be configured is 640 digits as provided in sys.int_info.str_digits_check_threshold.

Verification:

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int ('578966293710682886880994035146873798396722250538762761564"
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big'")

New in version 3.9.14.

4.15. Integer string conversion length limitation 89

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

The Python Library Reference, Release 3.9.20

4.15.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:
e int (string) with default base 10.
e int (string, base) for all bases that are not a power of 2.
e str (integer).
e repr (integer).

« any other string conversion to base 10, for example £"{integer}", "{}".format (integer), or
b"$d" % integer.

The limitations do not apply to functions with a linear algorithm:
e int (string, base) withbase 2, 4, 8, 16, or 32.
e int.from bytes () and int.to_bytes ().
e hex(),oct (),bin().
o Format Specification Mini-Language for hex, octal, and binary numbers.
e strto float.

e strtodecimal.Decimal.

4.15.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the
limit:

e PYTHONINTMAXSTRDIGITS,e.g. PYTHONINTMAXSTRDIGITS=640 python3to set the limit to 640
or PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

e —X int_max_str_digits,e.g python3 -X int_max_str_digits=640

e sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or —-X
int_max_str_digits. If both the env var and the —X option are set, the —X option takes precedence. A
value of -/ indicates that both were unset, thusa value of sys.int_info.default_max_str_digits
was used during initialization.

From code, you can inspect the current limit and set a new one using these sys APIs:

e sys.get_int_max_str_digits() and sys.set_int_max_str_digits () are a getter and
setter for the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:
e sys.int_info.default_max_str_digits isthe compiled-in default limit.

e sys.int_info.str_digits_check_threshold is the lowest accepted value for the limit (other
than 0 which disables it).

New in version 3.9.14.

Caution: Setting a low limit can lead to problems. While rare, code exists that contains integer constants in
decimal in their source that exceed the minimum threshold. A consequence of setting the limit is that Python
source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually
at startup time or import time or even at installation time - anytime an up to date . pyc does not already exist for
the code. A workaround for source that contains such large constants is to convert them to 0x hexadecimal form
as it has no limit.

920 Chapter 4. Built-in Types

The Python Library Reference, Release 3.9.20

to precompile . py sources to . pyc files.

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the
environment or flag so that it applies during startup and even during any installation step that may invoke Python

4.15.3 Recommended configuration

The default sys.int_info.default_max_str_digits isexpected to be reasonable for most applications.
If your application requires a different limit, set it from your main entry point using Python version agnostic code as

these APIs were added in security patch releases in versions before 3.11.

Example:

>>> import sys

>>> if hasattr(sys, "set_int_max_str_digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits()

if current_limit == 0 or current_limit > upper_bound:

sys.set_int_max_str_digits (upper_bound)
elif current_limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to O.

4.15. Integer string conversion length limitation

91

The Python Library Reference, Release 3.9.20

92 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. Ina t ry statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which iz is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except i on class or one of its subclasses, and not from BaseExcept i on. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

5.1 Exception context

When raising a new exception while another exception is already being handled, the new exception’s ___context_
attribute is automatically set to the handled exception. An exception may be handled when an except or finally
clause, or a with statement, is used.

This implicit exception context can be supplemented with an explicit cause by using f rom with raise:

raise new_exc from original_exc

The expression following f rom must be an exception or None. It willbesetas __cause___ on the raised exception.
Setting __cause___ also implicitly sets the ___suppress_context__ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyErrorto AttributeError), while leaving the old exception available in ___context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in ___cause___is always shown when present. An implicitly chained exception in
__context__isshownonlyif _ _cause__ is Noneand __ _suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

93

The Python Library Reference, Release 3.9.20

5.2 Inheriting from built-in exceptions

User code can create subclasses that inherit from an exception type. It’s recommended to only subclass one exception
type at a time to avoid any possible conflicts between how the bases handle the args attribute, as well as due to
possible memory layout incompatibilities.

CPython implementation detail: Most built-in exceptions are implemented in C for efficiency, see: Ob-
jects/exceptions.c. Some have custom memory layouts which makes it impossible to create a subclass that inherits
from multiple exception types. The memory layout of a type is an implementation detail and might change between
Python versions, leading to new conflicts in the future. Therefore, it’s recommended to avoid subclassing multiple
exception types altogether.

5.3 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str () is called on an instance of this class, the representation of the argument(s)
to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1b)
This method sets tb as the new traceback for the exception and returns the exception object. It is usually
used in exception handling code like this:

try:

except SomeException:
tbh = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. lookup ().

94 Chapter 5. Built-in Exceptions

https://github.com/python/cpython/tree/3.9/Objects/exceptions.c
https://github.com/python/cpython/tree/3.9/Objects/exceptions.c

The Python Library Reference, Release 3.9.20

5.4 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the io.IOBase.read () and io. IOBase. readline () methods return an empty string when they hit
EOF.)

exception FloatingPointError
Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close ().
It directly inherits from BaseException instead of Except ion since it is technically not an error.

exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in
from ... import hasa name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered
the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of ImportError which is raised by import when a module could not be located. It is also
raised when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally
caught by code that catches Except ion and thus prevent the interpreter from exiting.

Note: Catching a KeyboardInterrupt requires special consideration. Because it can be raised at un-
predictable points, it may, in some circumstances, leave the running program in an inconsistent state. It is
generally best to allow KeyboardInterrupt to end the program as quickly as possible or avoid raising it
entirely. (See Note on Signal Handlers and Exceptions.)

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C’s malloc () function), the interpreter may
not always be able to completely recover from this situation; it nevertheless raises an exception so that a stack
traceback can be printed, in case a run-away program was the cause.

5.4. Concrete exceptions 95

The Python Library Reference, Release 3.9.20

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method, or while the class is being developed
to indicate that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that
case either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and NotImplemented are notinterchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])

exception OSError (errno, strerror[, ﬁlename[, Winerror[, ﬁlenameZ]]])
This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default
to None if not specified. For backwards compatibility, if three arguments are passed, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The par-
ticular subclass depends on the final e rrno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The errno attribute is then an approx-
imate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the errno attribute is determined
from the Windows error code, and the errno argument is ignored. On other platforms, the winerror
argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open () or os.unlink ()), filename is
the file name passed to the function. For functions that involve two file system paths (such as os.
rename ()), £ilenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error,
select.error and mmap.error have been merged into OSError, and the constructor may return
a subclass.

Changed in version 3.4: The £i 1ename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding. Also, the filename2 constructor argument
and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is

96 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.9.20

sometimes raised for integers that are outside a required range. Because of the lack of standardization of
floating point exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from Runt imeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ())is exceeded.

New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref . proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weakref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StopIteration
Raised by built-in function next () and an iterator’s ___next___ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError
(retaining the StopIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

Changed in version 3.5: Introduced the RuntimeError transformation via from __ future_ import
generator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopIteration error raised in a
generator is transformed into a RuntimeError.

exception StopAsyncIteration
Must be raised by __anext__ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError (message, details)
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions compile (), exec (), or eval (), or when reading the initial script or standard input
(also interactively).

The str () of the exception instance returns only the error message. Details is a tuple whose members are
also available as separate attributes.

filename
The name of the file the syntax error occurred in.

lineno
Which line number in the file the error occurred in. This is 1-indexed: the first line in the file has a
linenoof 1.

offset
The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text
The source code text involved in the error.

5.4. Concrete exceptions 97

https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0479

The Python Library Reference, Release 3.9.20

For errors in f-string fields, the message is prefixed by “f-string: ” and the offsets are offsets in a text constructed
from the replacement expression. For example, compiling f’Bad {a b} field’ results in this args attribute: (‘f-
string: ..., (°, 1, 4, ‘(ab)n)).

exception IndentationError

Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError

Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError

Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version;itis also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exception SystemExit

This exception is raised by the sys.exit () function. It inherits from BaseException instead of
Exception so that it is not accidentally caught by code that catches Except i on. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit ().
If the value is an integer, it specifies the system exit status (passed to C’s exit () function); if it is None,
the exit status is zero; if it has another type (such as a string), the object’s value is printed and the exit status
is one.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to os. fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError

Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

This exception may be raised by user code to indicate that an attempted operation on an object is not sup-
ported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an
implementation, Not ImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1ist when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
resultina ValueError.

exception UnboundlLocalError

Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError

Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.
object[err.start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

98

Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.9.20

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in ob ject.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when an operation or function receives an argument that has the right type but an inappropriate value,
and the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

5.4.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i o module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError
and Connect